Comparing Transformer-Based Log Anomaly Detection With LLM Explainability In CI/CD Pipelines

With the DevOps setups of today, automating Continuous Integration and Deployment (CI/CD) pipelines is a necessity for achieving rapid software delivery. These pipelines generate enormous logs, which, despite being useful for debugging and monitoring, become cumbersome to analyze manually. In this c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2025 Intelligent Methods, Systems, and Applications​ (IMSA) s. 370 - 375
Hlavní autori: Al-Aqrabi, Qasem Magdi, Al-Aqrabi, Hatem Magdi, Solayman, Marwa M.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 12.07.2025
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With the DevOps setups of today, automating Continuous Integration and Deployment (CI/CD) pipelines is a necessity for achieving rapid software delivery. These pipelines generate enormous logs, which, despite being useful for debugging and monitoring, become cumbersome to analyze manually. In this comparative study, comparison of anomaly detection models on CI/CD pipeline logs, including classical, deep learning, and transformer-based approaches such as LogBERT is performed. An enhanced LogBERT-based classifier i s p resented, incorporating focal loss, grouped anomaly detection, and temperature scaling for better calibration and comparison with other Log anomaly detection models. The evaluation framework includes a feedback loop that allows user-labeled predictions to be reused for iterative retraining.
AbstractList With the DevOps setups of today, automating Continuous Integration and Deployment (CI/CD) pipelines is a necessity for achieving rapid software delivery. These pipelines generate enormous logs, which, despite being useful for debugging and monitoring, become cumbersome to analyze manually. In this comparative study, comparison of anomaly detection models on CI/CD pipeline logs, including classical, deep learning, and transformer-based approaches such as LogBERT is performed. An enhanced LogBERT-based classifier i s p resented, incorporating focal loss, grouped anomaly detection, and temperature scaling for better calibration and comparison with other Log anomaly detection models. The evaluation framework includes a feedback loop that allows user-labeled predictions to be reused for iterative retraining.
Author Al-Aqrabi, Qasem Magdi
Solayman, Marwa M.
Al-Aqrabi, Hatem Magdi
Author_xml – sequence: 1
  givenname: Qasem Magdi
  surname: Al-Aqrabi
  fullname: Al-Aqrabi, Qasem Magdi
  email: qasem.magdi@msa.edu.eg
  organization: MSA University,Faculty of Computer Science,Cairo,Egypt
– sequence: 2
  givenname: Hatem Magdi
  surname: Al-Aqrabi
  fullname: Al-Aqrabi, Hatem Magdi
  email: hatem.magdi@msa.edu.eg
  organization: MSA University,Faculty of Computer Science,Cairo,Egypt
– sequence: 3
  givenname: Marwa M.
  surname: Solayman
  fullname: Solayman, Marwa M.
  email: mmsolayman@msa.edu.eg
  organization: MSA University,Faculty of Computer Science,Cairo,Egypt
BookMark eNo1j8FKxDAURSPoQsf5A8H8QGeSvDZplrUzjoUOChbcCEPSvo6BNi1pF_bvVdTF5cBZHLg35NIPHgm552zDOdPb4viayUQBbAQTybfjUnGZXpC1VjoF4AnjqWTX5D0f-tEE58-0CsZP7RB6DNGDmbCh5XCmmR960y10hzPWsxs8fXPzBy3LI91_jp1x3ljXuXmhhad5sc139MWN2DmP0y25ak034fqPK1I97qv8KSqfD0WelZHTMEeWgRT6ZwlYxWvTtIJpo5VCqVNW1xBjbGNUXMciraHBmIFlKK1MZCsMrMjdb9Yh4mkMrjdhOf1_hi8WL1BR
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IMSA65733.2025.11167168
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331501860
EndPage 375
ExternalDocumentID 11167168
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-b03629362953b71cadf209a977e6980cc34e4b4e719428c3de403b0e6b656f2a3
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:13 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-b03629362953b71cadf209a977e6980cc34e4b4e719428c3de403b0e6b656f2a3
PageCount 6
ParticipantIDs ieee_primary_11167168
PublicationCentury 2000
PublicationDate 2025-July-12
PublicationDateYYYYMMDD 2025-07-12
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-July-12
  day: 12
PublicationDecade 2020
PublicationTitle 2025 Intelligent Methods, Systems, and Applications​ (IMSA)
PublicationTitleAbbrev IMSA
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9146843
Snippet With the DevOps setups of today, automating Continuous Integration and Deployment (CI/CD) pipelines is a necessity for achieving rapid software delivery. These...
SourceID ieee
SourceType Publisher
StartPage 370
SubjectTerms Anomaly detection
Calibration
CI/CD pipelines
Context modeling
DevOps
DevOps automation
Explainable AI
Feedback learning
Pipelines
Semantics
Software
Training
Transformer models
Transformers
Visualization
Title Comparing Transformer-Based Log Anomaly Detection With LLM Explainability In CI/CD Pipelines
URI https://ieeexplore.ieee.org/document/11167168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA46PHhSceI3OXjN1jRpPo7aORx0Y-DAHYTRpG9nQbuxdcL-vU22KR48eAiEEAg8Obxfz_O-CN3pFCJqNCeUGkl4qnKihOCk_nrNBGOpll4onMjBQI3HergVq3stDAB48hm03NbX8rOZXblUWZu6ogEVah_tSyk3Yq0tZ4sGut3rP98L19-vDvvCqLW7_Wtuijcb3aN_PniMmj8CPDz8Ni0naA_KU_Qab2YGllM82rmbsCAPtR3KcDKb4jqU_0jf17gDlSdYlfilqN5wkvSxo9p5nZSjwq5xr8Rxrx138LCYO0E6LJto1H0cxU9kOxyBFJpVxDjLo92KmJHUplkeBrpGVoLQKrCWceCGg6S6DjAsy4AHzAQgTO3A5WHKzlCjnJVwjrDDDjQLbJCFXIWpErm1kY64CwalEheo6ZCZzDftLyY7UC7_OL9Chw5_lwCl4TVqVIsV3KAD-1kVy8Wt_7QvaRWXUA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46BT2pOPG3OXjN1jRpmhy1c6zYjYEFdxBGm75qQbuxdcL-e5tsUzx48BAIIRB47_C9H9-Xh9CtSsCjqeKE0tQnPJE5kUJwUrteMcFYonwrFI78wUCORmq4FqtbLQwAWPIZtMzW9vKziV6YUlmbmqYBFXIb7Xicu3Ql11qztqij2mH_6U6YH_7qxM_1Wpv7vyanWODoHvzzyUPU_JHg4eE3uByhLSiP0UuwmhpYvuJ4E3DCjNzXSJThaPKK62T-I3lf4g5UlmJV4ueiesNR1MeGbGeVUoYMu8RhiYOwHXTwsJgaSTrMmyjuPsRBj6zHI5BCsYqkBnuUWR5LfaqTLHcdVdvWB6GkozXjwFMOPlV1iqFZBtxhqQMirUO43E3YCWqUkxJOETa2A8Uc7WQul24iRa61pzxu0kFfijPUNJYZT1cfYIw3Rjn_4_wG7fXifjSOwsHjBdo3vjDlUOpeokY1W8AV2tWfVTGfXVsHfgF5HJqX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+Intelligent+Methods%2C+Systems%2C+and+Applications%E2%80%8B+%28IMSA%29&rft.atitle=Comparing+Transformer-Based+Log+Anomaly+Detection+With+LLM+Explainability+In+CI%2FCD+Pipelines&rft.au=Al-Aqrabi%2C+Qasem+Magdi&rft.au=Al-Aqrabi%2C+Hatem+Magdi&rft.au=Solayman%2C+Marwa+M.&rft.date=2025-07-12&rft.pub=IEEE&rft.spage=370&rft.epage=375&rft_id=info:doi/10.1109%2FIMSA65733.2025.11167168&rft.externalDocID=11167168