Improved Crayfish Optimization Algorithm for Solving Feature Selection Problem

To improve the optimization effect of the crayfish optimization algorithm. This paper proposes a singer chaotic map and population evolution improved crayfish optimization algorithm (ICOA). ICOA improves the random rate of the initial population by adding a chaotic map strategy, which helps the algo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control and Decision Conference s. 3514 - 3519
Hlavní autoři: Rao, Honghua, Jia, Heming, Shi, Xiaoming, You, Fangkai, Xue, Bowen, Du, Yilong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 16.05.2025
Témata:
ISSN:1948-9447
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To improve the optimization effect of the crayfish optimization algorithm. This paper proposes a singer chaotic map and population evolution improved crayfish optimization algorithm (ICOA). ICOA improves the random rate of the initial population by adding a chaotic map strategy, which helps the algorithm to converge better. Then, the population evolution strategy is proposed through the crossevolution of the historical and current populations. The population evolution strategy improves the information interaction between populations and the convergence effect of the algorithm. To verify the optimization effect of ICOA, the CEC2020 test function and feature selection are used as experiments. Comparative experiments are conducted between ICOA and various algorithms. The results indicate that ICOA has better optimization effects.
AbstractList To improve the optimization effect of the crayfish optimization algorithm. This paper proposes a singer chaotic map and population evolution improved crayfish optimization algorithm (ICOA). ICOA improves the random rate of the initial population by adding a chaotic map strategy, which helps the algorithm to converge better. Then, the population evolution strategy is proposed through the crossevolution of the historical and current populations. The population evolution strategy improves the information interaction between populations and the convergence effect of the algorithm. To verify the optimization effect of ICOA, the CEC2020 test function and feature selection are used as experiments. Comparative experiments are conducted between ICOA and various algorithms. The results indicate that ICOA has better optimization effects.
Author Shi, Xiaoming
Rao, Honghua
Xue, Bowen
You, Fangkai
Jia, Heming
Du, Yilong
Author_xml – sequence: 1
  givenname: Honghua
  surname: Rao
  fullname: Rao, Honghua
  email: raohonghua@stu.nepu.edu.cn
  organization: School of Electrical and Information Engineering, Northeast Petroleum University,Daqing,China,163318
– sequence: 2
  givenname: Heming
  surname: Jia
  fullname: Jia, Heming
  email: jiaheming@fjsmu.edu.cn
  organization: School of Information Engineering, Sanming University,Sanming,China,365004
– sequence: 3
  givenname: Xiaoming
  surname: Shi
  fullname: Shi, Xiaoming
  email: 20210868130@fjsmu.edu.cn
  organization: School of Information Engineering, Sanming University,Sanming,China,365004
– sequence: 4
  givenname: Fangkai
  surname: You
  fullname: You, Fangkai
  email: 20210868217@fjsmu.edu.cn
  organization: School of Information Engineering, Sanming University,Sanming,China,365004
– sequence: 5
  givenname: Bowen
  surname: Xue
  fullname: Xue, Bowen
  email: xuebowen@stu.nepu.edu.cn
  organization: School of Electrical and Information Engineering, Northeast Petroleum University,Daqing,China,163318
– sequence: 6
  givenname: Yilong
  surname: Du
  fullname: Du, Yilong
  email: bayi15093488812@byau.edu.cn
  organization: School of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University,Daqing,China,163319
BookMark eNo1j99KwzAchaMouM29gWBeoDP_01yO6nQwnLDdj6T9ZYu0TUnrYD79ZOrVgcPH4TtjdNPGFhB6pGRGKTFPRfFcKCm0mDHC5KUjVOsrNDXa5JxTSYlU8hqNqBF5ZoTQd2jc95-EKMUJGaH3ZdOleIQKF8mefOgPeN0NoQnfdgixxfN6H1MYDg32MeFNrI-h3eMF2OErAd5ADeWF-0jR1dDco1tv6x6mfzlB28XLtnjLVuvXZTFfZcHwIbOl06SSnjKnSk0rwaSySlpwea6M9ZWgloHhSmjGJfXOKOJJLoB7Ld2P-QQ9_M4GANh1KTQ2nXb_9_kZamtR0A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCDC65474.2025.11090177
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331510565
EISSN 1948-9447
EndPage 3519
ExternalDocumentID 11090177
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-acb70d5f12b6c71d4256a65aeb8869afd41a2e936472351fb960f084e3f75b663
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:35 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-acb70d5f12b6c71d4256a65aeb8869afd41a2e936472351fb960f084e3f75b663
PageCount 6
ParticipantIDs ieee_primary_11090177
PublicationCentury 2000
PublicationDate 2025-May-16
PublicationDateYYYYMMDD 2025-05-16
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-16
  day: 16
PublicationDecade 2020
PublicationTitle Chinese Control and Decision Conference
PublicationTitleAbbrev CCDC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0066300
Score 1.9084444
Snippet To improve the optimization effect of the crayfish optimization algorithm. This paper proposes a singer chaotic map and population evolution improved crayfish...
SourceID ieee
SourceType Publisher
StartPage 3514
SubjectTerms CEC2020 test function
Convergence
crayfish optimization algorithm
Feature extraction
feature selection
Information exchange
Optimization
population evolution strategy
Title Improved Crayfish Optimization Algorithm for Solving Feature Selection Problem
URI https://ieeexplore.ieee.org/document/11090177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwELYK6tAufVH1LQ9dA-RhOxmrtKhDRZFgYEO2cy6RgKAQKvXf1-eEPoYO3SzLlqXz8873fR8h98BYyLNAedIA9yITKy_WhnsJcIZ03lIqR-L6IobDeDpNRg1Y3WFhAMAln0EXi-4vPyv0FkNlPWTHtCtItEhLCF6DtXbHLkfuqCaByzbrpeljisK6GDcJWHfX9ZeIirtDBkf_HP2YdL7ReHT0dc-ckD1YnZLDH0SCZ2RYxwYgo2kpP0y-mdNXexYsG5AlfVi8FWVezZfUvlHpuFhgGIHi829bAh07LRxsN6rlZTpkMniapM9eo5Tg5UlYeVIr0c-Y8QPFtfAzuw-55EyCimOeSJNFvgwgcVTxIfONsm6L6ccRhEYwZS13TtqrYgUXhIK2_hqzXpj0w0jHkKAYMfC-RtoWDuEl6aBlZuuaC2O2M8rVH_XX5ADtj__tPr8h7arcwi3Z1-9Vvinv3Ax-AgYanLc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIAEXtiJ2fOCaNpud5IgCVRElVGoPvVW2M6aR2gSlKRJ_j-2kLAcO3CzLlqXxOuN57yF0C4R4NHW5xSRQy5cht0IhqRUBJZrOmzFuSFwHQZKEk0k0bMDqBgsDACb5DDq6aP7y00KsdKisq9kx1QoKNtEW8X3XruFa64OXavaoJoVLNezG8X2spXV15MQlnXXnXzIq5hbp7f9z_APU_sbj4eHXTXOINiA_Qns_qASPUVJHByDFcck-ZLac4Rd1GiwamCW-m78WZVbNFli9UvGomOtAAtYPwFUJeGTUcHS7YS0w00bj3sM47luNVoKVRV5lMcEDOyXScTkVgZOqnUgZJQx4GNKIydR3mAuRIYv3iCO5clykHfrgyYBwZbkT1MqLHE4RBqE8NqL8MOZ4vggh0nLEQG2hiVsoeGeorS0zfavZMKZro5z_UX-Ddvrj58F08Jg8XaBdPRf6992hl6hVlSu4QtvivcqW5bWZzU9duJ_-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Improved+Crayfish+Optimization+Algorithm+for+Solving+Feature+Selection+Problem&rft.au=Rao%2C+Honghua&rft.au=Jia%2C+Heming&rft.au=Shi%2C+Xiaoming&rft.au=You%2C+Fangkai&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=3514&rft.epage=3519&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090177&rft.externalDocID=11090177