Improved Crayfish Optimization Algorithm for Solving Feature Selection Problem
To improve the optimization effect of the crayfish optimization algorithm. This paper proposes a singer chaotic map and population evolution improved crayfish optimization algorithm (ICOA). ICOA improves the random rate of the initial population by adding a chaotic map strategy, which helps the algo...
Uloženo v:
| Vydáno v: | Chinese Control and Decision Conference s. 3514 - 3519 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
16.05.2025
|
| Témata: | |
| ISSN: | 1948-9447 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To improve the optimization effect of the crayfish optimization algorithm. This paper proposes a singer chaotic map and population evolution improved crayfish optimization algorithm (ICOA). ICOA improves the random rate of the initial population by adding a chaotic map strategy, which helps the algorithm to converge better. Then, the population evolution strategy is proposed through the crossevolution of the historical and current populations. The population evolution strategy improves the information interaction between populations and the convergence effect of the algorithm. To verify the optimization effect of ICOA, the CEC2020 test function and feature selection are used as experiments. Comparative experiments are conducted between ICOA and various algorithms. The results indicate that ICOA has better optimization effects. |
|---|---|
| AbstractList | To improve the optimization effect of the crayfish optimization algorithm. This paper proposes a singer chaotic map and population evolution improved crayfish optimization algorithm (ICOA). ICOA improves the random rate of the initial population by adding a chaotic map strategy, which helps the algorithm to converge better. Then, the population evolution strategy is proposed through the crossevolution of the historical and current populations. The population evolution strategy improves the information interaction between populations and the convergence effect of the algorithm. To verify the optimization effect of ICOA, the CEC2020 test function and feature selection are used as experiments. Comparative experiments are conducted between ICOA and various algorithms. The results indicate that ICOA has better optimization effects. |
| Author | Shi, Xiaoming Rao, Honghua Xue, Bowen You, Fangkai Jia, Heming Du, Yilong |
| Author_xml | – sequence: 1 givenname: Honghua surname: Rao fullname: Rao, Honghua email: raohonghua@stu.nepu.edu.cn organization: School of Electrical and Information Engineering, Northeast Petroleum University,Daqing,China,163318 – sequence: 2 givenname: Heming surname: Jia fullname: Jia, Heming email: jiaheming@fjsmu.edu.cn organization: School of Information Engineering, Sanming University,Sanming,China,365004 – sequence: 3 givenname: Xiaoming surname: Shi fullname: Shi, Xiaoming email: 20210868130@fjsmu.edu.cn organization: School of Information Engineering, Sanming University,Sanming,China,365004 – sequence: 4 givenname: Fangkai surname: You fullname: You, Fangkai email: 20210868217@fjsmu.edu.cn organization: School of Information Engineering, Sanming University,Sanming,China,365004 – sequence: 5 givenname: Bowen surname: Xue fullname: Xue, Bowen email: xuebowen@stu.nepu.edu.cn organization: School of Electrical and Information Engineering, Northeast Petroleum University,Daqing,China,163318 – sequence: 6 givenname: Yilong surname: Du fullname: Du, Yilong email: bayi15093488812@byau.edu.cn organization: School of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University,Daqing,China,163319 |
| BookMark | eNo1j99KwzAchaMouM29gWBeoDP_01yO6nQwnLDdj6T9ZYu0TUnrYD79ZOrVgcPH4TtjdNPGFhB6pGRGKTFPRfFcKCm0mDHC5KUjVOsrNDXa5JxTSYlU8hqNqBF5ZoTQd2jc95-EKMUJGaH3ZdOleIQKF8mefOgPeN0NoQnfdgixxfN6H1MYDg32MeFNrI-h3eMF2OErAd5ADeWF-0jR1dDco1tv6x6mfzlB28XLtnjLVuvXZTFfZcHwIbOl06SSnjKnSk0rwaSySlpwea6M9ZWgloHhSmjGJfXOKOJJLoB7Ld2P-QQ9_M4GANh1KTQ2nXb_9_kZamtR0A |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CCDC65474.2025.11090177 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331510565 |
| EISSN | 1948-9447 |
| EndPage | 3519 |
| ExternalDocumentID | 11090177 |
| Genre | orig-research |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-acb70d5f12b6c71d4256a65aeb8869afd41a2e936472351fb960f084e3f75b663 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:00:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-acb70d5f12b6c71d4256a65aeb8869afd41a2e936472351fb960f084e3f75b663 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_11090177 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-May-16 |
| PublicationDateYYYYMMDD | 2025-05-16 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Control and Decision Conference |
| PublicationTitleAbbrev | CCDC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0066300 |
| Score | 1.9084444 |
| Snippet | To improve the optimization effect of the crayfish optimization algorithm. This paper proposes a singer chaotic map and population evolution improved crayfish... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 3514 |
| SubjectTerms | CEC2020 test function Convergence crayfish optimization algorithm Feature extraction feature selection Information exchange Optimization population evolution strategy |
| Title | Improved Crayfish Optimization Algorithm for Solving Feature Selection Problem |
| URI | https://ieeexplore.ieee.org/document/11090177 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwELYK6tAufVH1LQ9dA-RhOxmrtKhDRZFgYEO2cy6RgKAQKvXf1-eEPoYO3SzLlqXz8873fR8h98BYyLNAedIA9yITKy_WhnsJcIZ03lIqR-L6IobDeDpNRg1Y3WFhAMAln0EXi-4vPyv0FkNlPWTHtCtItEhLCF6DtXbHLkfuqCaByzbrpeljisK6GDcJWHfX9ZeIirtDBkf_HP2YdL7ReHT0dc-ckD1YnZLDH0SCZ2RYxwYgo2kpP0y-mdNXexYsG5AlfVi8FWVezZfUvlHpuFhgGIHi829bAh07LRxsN6rlZTpkMniapM9eo5Tg5UlYeVIr0c-Y8QPFtfAzuw-55EyCimOeSJNFvgwgcVTxIfONsm6L6ccRhEYwZS13TtqrYgUXhIK2_hqzXpj0w0jHkKAYMfC-RtoWDuEl6aBlZuuaC2O2M8rVH_XX5ADtj__tPr8h7arcwi3Z1-9Vvinv3Ax-AgYanLc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIAEXtiJ2fOCaNpud5IgCVRElVGoPvVW2M6aR2gSlKRJ_j-2kLAcO3CzLlqXxOuN57yF0C4R4NHW5xSRQy5cht0IhqRUBJZrOmzFuSFwHQZKEk0k0bMDqBgsDACb5DDq6aP7y00KsdKisq9kx1QoKNtEW8X3XruFa64OXavaoJoVLNezG8X2spXV15MQlnXXnXzIq5hbp7f9z_APU_sbj4eHXTXOINiA_Qns_qASPUVJHByDFcck-ZLac4Rd1GiwamCW-m78WZVbNFli9UvGomOtAAtYPwFUJeGTUcHS7YS0w00bj3sM47luNVoKVRV5lMcEDOyXScTkVgZOqnUgZJQx4GNKIydR3mAuRIYv3iCO5clykHfrgyYBwZbkT1MqLHE4RBqE8NqL8MOZ4vggh0nLEQG2hiVsoeGeorS0zfavZMKZro5z_UX-Ddvrj58F08Jg8XaBdPRf6992hl6hVlSu4QtvivcqW5bWZzU9duJ_- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Improved+Crayfish+Optimization+Algorithm+for+Solving+Feature+Selection+Problem&rft.au=Rao%2C+Honghua&rft.au=Jia%2C+Heming&rft.au=Shi%2C+Xiaoming&rft.au=You%2C+Fangkai&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=3514&rft.epage=3519&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090177&rft.externalDocID=11090177 |