Path Planning for Robots Based on Improved Genetic Algorithm

Aiming at the problems of long planning time and path feasibility existing in genetic algorithm (GA) for path planning, an improved method integrating GA with Rapidly-exploring Random Tree (RRT) algorithm is proposed. By generating initial path populations using the RRT algorithm, eliminating redund...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 10th International Conference on Information Science, Computer Technology and Transportation (ISCTT) S. 211 - 216
Hauptverfasser: Zhang, Yongquan, Ou, Hanwen, Zhang, Tian
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 13.06.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Aiming at the problems of long planning time and path feasibility existing in genetic algorithm (GA) for path planning, an improved method integrating GA with Rapidly-exploring Random Tree (RRT) algorithm is proposed. By generating initial path populations using the RRT algorithm, eliminating redundant paths with a deletion operator, and introducing an elite selection strategy to optimize the selection operation, the continuity of paths and the convergence speed of the algorithm are effectively improved. Additionally, a path point backtracking method is utilized to further optimize path length and turning points. Experimental results show that the improved algorithm outperforms the traditional A^{*} algorithm and other improved GA in terms of path length, number of inflection points, and iteration times. The path length is shortened by an average of 8%, and the iteration times are reduced to 53 \%-85 \% of those of the comparative algorithms, verifying its high efficiency and robustness in complex environments.
AbstractList Aiming at the problems of long planning time and path feasibility existing in genetic algorithm (GA) for path planning, an improved method integrating GA with Rapidly-exploring Random Tree (RRT) algorithm is proposed. By generating initial path populations using the RRT algorithm, eliminating redundant paths with a deletion operator, and introducing an elite selection strategy to optimize the selection operation, the continuity of paths and the convergence speed of the algorithm are effectively improved. Additionally, a path point backtracking method is utilized to further optimize path length and turning points. Experimental results show that the improved algorithm outperforms the traditional A^{*} algorithm and other improved GA in terms of path length, number of inflection points, and iteration times. The path length is shortened by an average of 8%, and the iteration times are reduced to 53 \%-85 \% of those of the comparative algorithms, verifying its high efficiency and robustness in complex environments.
Author Ou, Hanwen
Zhang, Yongquan
Zhang, Tian
Author_xml – sequence: 1
  givenname: Yongquan
  surname: Zhang
  fullname: Zhang, Yongquan
  email: 173272062@qq.com
  organization: Nanchong Vocational and Technical College of Science and Technology,Nanchong,Sichuan,China
– sequence: 2
  givenname: Hanwen
  surname: Ou
  fullname: Ou, Hanwen
  email: 78654343@qq.com
  organization: Chongqing University of Arts and Sciences,Yongchuan,Chongqing,China
– sequence: 3
  givenname: Tian
  surname: Zhang
  fullname: Zhang, Tian
  email: 2447015077@qq.com
  organization: Nanchong Vocational and Technical College of Science and Technology,Nanchong,Sichuan,China
BookMark eNo1j8tKAzEYRiPoQmvfwEVeYGoukxu4qYPWgYKlnX1JZv60gZmkZILg21tQV9_hLA58D-g2pggIYUpWlBLz3B6arpOyJnzFCBNXSbkyUt-gpVFGc04FocaQe_Sys-WMd6ONMcQT9injfXKpzPjVzjDgFHE7XXL6uvIGIpTQ4_V4SjmU8_SI7rwdZ1j-7QJ1729d81FtPzdts95WwfBSWQNcO-YdU1YxpTQXIKXUTlMrqLRi8Fr0bnCsZ73UzKiaMKiZJwas8ANfoKffbACA4yWHyebv4_8n_gPMV0Yu
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISCTT66403.2025.11137968
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331501990
EndPage 216
ExternalDocumentID 11137968
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-a9e38b2fb27a7277835e6668b81a516a5df85cbdb2c2c68297402e42f09ea5fd3
IEDL.DBID RIE
IngestDate Wed Sep 10 07:40:43 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-a9e38b2fb27a7277835e6668b81a516a5df85cbdb2c2c68297402e42f09ea5fd3
PageCount 6
ParticipantIDs ieee_primary_11137968
PublicationCentury 2000
PublicationDate 2025-June-13
PublicationDateYYYYMMDD 2025-06-13
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-13
  day: 13
PublicationDecade 2020
PublicationTitle 2025 10th International Conference on Information Science, Computer Technology and Transportation (ISCTT)
PublicationTitleAbbrev ISCTT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.911731
Snippet Aiming at the problems of long planning time and path feasibility existing in genetic algorithm (GA) for path planning, an improved method integrating GA with...
SourceID ieee
SourceType Publisher
StartPage 211
SubjectTerms Backtracking
Convergence
Genetic algorithms
Heuristic algorithms
improved genetic algorithm
mobile robot
Path planning
Planning
rapidly-exploring random tree algorithm
Testing
Training
Transportation
Turning
Title Path Planning for Robots Based on Improved Genetic Algorithm
URI https://ieeexplore.ieee.org/document/11137968
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcAEiCK-5YE1bWPHji2xQEUFS1VBhm6VfbahEiSoTfn9nNMGxMDAZkWWEtuR7r3zvXuEXOtUBzBSInJTLsmsg0TjBydaILZmkRKF0JhN5JOJms30dCtWb7Qw3vum-Mz347C5y3cVrGOqbBBt0XMtVYd08lxuxFptdc5QDx6fR0UhZTbkyPuY6LfTfxmnNHFjvP_PNx6Q3o8Cj06_Y8sh2fHlEbmZIlyjrc0QRbhJnypb1St6h7HI0aqkmxwBjmM7afwn6O3bS4X8__W9R4rxfTF6SLbuB8lC8zox2nNlWbAsN4gxYoLGI9VQVqVGpNIIF5QA6ywDBjIKZJEJ-oyFIe61CI4fk25Zlf6EUOWRpHnQuWaRzoHhAFwYCA4yDVl-Snpx5fOPTX-Lebvosz-en5O9uL-xYCrlF6RbL9f-kuzCZ71YLa-aU_kCxwiPNw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oFPSk4sTf5uC125o0aQJedDg2nGNoD7uN_NSBtrJ1_v0m3ap48OAtFEKbpPC-7-V97wO4FrFwWjLmkRs3UaKMjoT_4EhQj61xoETOVWYT6WjEJxMxXovVKy2MtbYqPrOtMKzu8k2hlyFV1g626KlgfBO2gnXWWq5V1-d0RHvw3M0yxpIO8cwP01Y94Zd1ShU5env_fOc-NH80eGj8HV0OYMPmh3Az9oAN1UZDyANO9FSoolygOx-NDCpytMoS-HFoKO3_CnT79lLMZ-XrexOy3n3W7Udr_4NoJkgZSWEJV9gpnEqPMkKKxnqywRWPJY2ZpMZxqpVRWGPNgkTWc0GbYNfxu02dIUfQyIvcHgPi1tM0q0UqcCB0WhKtCZXaGZ0InaQn0Awrn36sOlxM60Wf_vH8Cnb62eNwOhyMHs5gN-x1KJ-KyTk0yvnSXsC2_ixni_lldUJfb5WSgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+10th+International+Conference+on+Information+Science%2C+Computer+Technology+and+Transportation+%28ISCTT%29&rft.atitle=Path+Planning+for+Robots+Based+on+Improved+Genetic+Algorithm&rft.au=Zhang%2C+Yongquan&rft.au=Ou%2C+Hanwen&rft.au=Zhang%2C+Tian&rft.date=2025-06-13&rft.pub=IEEE&rft.spage=211&rft.epage=216&rft_id=info:doi/10.1109%2FISCTT66403.2025.11137968&rft.externalDocID=11137968