Multi-time Scale Stochastic Optimization for Hybrid AC-DC Distribution Networks with PET Based on E-C-Kmeans Clustering
This paper addresses the uncertainty of distributed power supply in a hybrid AC-DC distribution network with multi-port Power Electronic Transformers (PET). A multi-time scale stochastic optimization model based on E-C-Kmeans clustering is proposed. First, the E-C-Kmeans clustering and reduction mod...
Uloženo v:
| Vydáno v: | 2025 4th International Conference on Smart Grid and Green Energy (ICSGGE) s. 223 - 226 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
28.02.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper addresses the uncertainty of distributed power supply in a hybrid AC-DC distribution network with multi-port Power Electronic Transformers (PET). A multi-time scale stochastic optimization model based on E-C-Kmeans clustering is proposed. First, the E-C-Kmeans clustering and reduction model for new energy scenarios is constructed by integrating the CBFSAFODP algorithm (a fast search and density peak discovery algorithm) with the K-means algorithm. Then, the model aims to minimize wind curtailment penalties, operational and maintenance costs of energy storage devices, electricity purchasing costs, and micro gas turbine generation costs. A random optimization operation model for the day-ahead and intra-day scheduling of the hybrid AC-DC distribution network with PET based on E-C-Kmeans clustering is built. Finally, the case study on the hybrid AC-DC distribution network with PET verifies that the proposed model can reduce system operating costs and effectively address the uncertainty in the distribution of renewable energy generation. |
|---|---|
| DOI: | 10.1109/ICSGGE64667.2025.10984875 |