Multi-Task Scheduling Optimization Method Integrating Visibility Graph, Simulated Annealing, and A Algorithm
This paper presents a multi-task allocation method integrating the visibility graph, A* algorithm, and simulated annealing to enhance scheduling stability and path accuracy in complex environments. The method constructs a path cost matrix and globally optimizes task sequences. Experimental results s...
Uloženo v:
| Vydáno v: | 2025 2nd International Conference on Algorithms, Software Engineering and Network Security (ASENS) s. 263 - 267 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
21.03.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents a multi-task allocation method integrating the visibility graph, A* algorithm, and simulated annealing to enhance scheduling stability and path accuracy in complex environments. The method constructs a path cost matrix and globally optimizes task sequences. Experimental results show a 2% reduction in path length compared to Euclidean-based methods while improving path planning accuracy, allocation efficiency, and stability, providing a robust solution for dynamic multi-task scheduling. |
|---|---|
| DOI: | 10.1109/ASENS64990.2025.11011007 |