Multi-Task Scheduling Optimization Method Integrating Visibility Graph, Simulated Annealing, and A Algorithm
This paper presents a multi-task allocation method integrating the visibility graph, A* algorithm, and simulated annealing to enhance scheduling stability and path accuracy in complex environments. The method constructs a path cost matrix and globally optimizes task sequences. Experimental results s...
Gespeichert in:
| Veröffentlicht in: | 2025 2nd International Conference on Algorithms, Software Engineering and Network Security (ASENS) S. 263 - 267 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
21.03.2025
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper presents a multi-task allocation method integrating the visibility graph, A* algorithm, and simulated annealing to enhance scheduling stability and path accuracy in complex environments. The method constructs a path cost matrix and globally optimizes task sequences. Experimental results show a 2% reduction in path length compared to Euclidean-based methods while improving path planning accuracy, allocation efficiency, and stability, providing a robust solution for dynamic multi-task scheduling. |
|---|---|
| DOI: | 10.1109/ASENS64990.2025.11011007 |