High-Dimensional EV Charging Optimization: Leveraging APSO for Peak Load Management

In this study, we present an electric vehicle (EV) scheduling algorithm based on the Adaptive Particle Swarm Optimization (APSO) technique. The objective is to effectively manage a large-scale charging scenario. The scheduling problem involves numerous variables, including binary variables, represen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 International Conference on Intelligent Computing and Control Systems (ICICCS) S. 185 - 191
Hauptverfasser: Sriabisha, R., Aravindkumar, J.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 19.03.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, we present an electric vehicle (EV) scheduling algorithm based on the Adaptive Particle Swarm Optimization (APSO) technique. The objective is to effectively manage a large-scale charging scenario. The scheduling problem involves numerous variables, including binary variables, representing the charging states and schedules of a fleet of EVs. Uncoordinated charging leads to simultaneous charging of all vehicles would result in a significant peak power demand, posing a strain on the power grid. To address this, the APSO algorithm effectively redistributes the charging times, achieving a notable reduction in peak demand in the optimal scenario. This reduction is facilitated by the algorithm's adaptive capabilities, which allow it to dynamically adjust to changing conditions and constraints, thereby optimizing the load distribution and enhancing grid stability. The simulation results demonstrate APSO's efficacy in addressing complex EV scheduling problems, contributing to more sustainable and efficient energy use in electric mobility.
AbstractList In this study, we present an electric vehicle (EV) scheduling algorithm based on the Adaptive Particle Swarm Optimization (APSO) technique. The objective is to effectively manage a large-scale charging scenario. The scheduling problem involves numerous variables, including binary variables, representing the charging states and schedules of a fleet of EVs. Uncoordinated charging leads to simultaneous charging of all vehicles would result in a significant peak power demand, posing a strain on the power grid. To address this, the APSO algorithm effectively redistributes the charging times, achieving a notable reduction in peak demand in the optimal scenario. This reduction is facilitated by the algorithm's adaptive capabilities, which allow it to dynamically adjust to changing conditions and constraints, thereby optimizing the load distribution and enhancing grid stability. The simulation results demonstrate APSO's efficacy in addressing complex EV scheduling problems, contributing to more sustainable and efficient energy use in electric mobility.
Author Aravindkumar, J.
Sriabisha, R.
Author_xml – sequence: 1
  givenname: R.
  surname: Sriabisha
  fullname: Sriabisha, R.
  email: sriabisha3003.sse@saveetha.com
  organization: Electrical and Electronics Engineering Saveetha Institiuion of Medical and Technical Sciences,Chennai,India
– sequence: 2
  givenname: J.
  surname: Aravindkumar
  fullname: Aravindkumar, J.
  email: aravindkumarj.sse@saveetha.com
  organization: Electrical and Electronics Engineering Saveetha Institiuion of Medical and Technical Sciences,Chennai,India
BookMark eNo1j81Kw0AURkfQhda-gYvxARLnzmQmGXcl1rYQSSHFbbkmd9LBZlLSIOjTG_xZfXAOHPhu2GXoAzF2DyIGEPZhk2_yvDIaLMRSSB1PMNNSmws2t6nNlAINUmTZNavWvj1ET76jcPZ9wCNfvvL8gEPrQ8vL0-g7_4XjpB55QR804I9YbKuSu37gW8J3XvTY8BcM2NLUGW_ZlcPjmeZ_O2O75-UuX0dFudrkiyLyVo0RKmu0ScDWqVYuMSjQOGhclimptBA1ErwpMsY6lUqoNSYIRBZFI2sQTs3Y3W_WE9H-NPgOh8_9_1X1DWeETe0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICICCS65191.2025.10985256
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331512088
EndPage 191
ExternalDocumentID 10985256
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-a39656419c753f46a0a6f1df88323500cae1b3e669f3721c5a4a1ee9a0d2c10f3
IEDL.DBID RIE
IngestDate Thu May 29 05:57:34 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-a39656419c753f46a0a6f1df88323500cae1b3e669f3721c5a4a1ee9a0d2c10f3
PageCount 7
ParticipantIDs ieee_primary_10985256
PublicationCentury 2000
PublicationDate 2025-March-19
PublicationDateYYYYMMDD 2025-03-19
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-19
  day: 19
PublicationDecade 2020
PublicationTitle 2025 International Conference on Intelligent Computing and Control Systems (ICICCS)
PublicationTitleAbbrev ICICCS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9024721
Snippet In this study, we present an electric vehicle (EV) scheduling algorithm based on the Adaptive Particle Swarm Optimization (APSO) technique. The objective is to...
SourceID ieee
SourceType Publisher
StartPage 185
SubjectTerms Data collection
Distribution Network
Electric Vehicle
Energy consumption
Heuristic algorithms
Microgrid
Optimization
Particle swarm optimization
Pricing
Scalability
Stability analysis
Strain
Sustainable development
Title High-Dimensional EV Charging Optimization: Leveraging APSO for Peak Load Management
URI https://ieeexplore.ieee.org/document/10985256
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA22iHhSseI3EbymbppsNvEma4uF0hZapLeSzU6giK3U1t_vJN1aPHjwFkIgMMlkZjLz5hFybxMrtJWeYaSTMem4Y1oKYAW0CrxSRamgiGQTWb-vJxMzrMDqEQsDALH4DJphGHP55cKtw1cZarjRKdroGqllmdqAtQ7IXdU386Gbd_N8pNAnCYFfK21u1_9iTomGo3P0zy2PSWMHwaPDH-NyQvZgfkpGoSqDPYeG_JtmGrT9SkPCPDAN0QFq_3sFq3ykPcBLGimI6NNwNKDonFJ8_95ob2FLuqt6aZBxpz3OX1jFisBmRqyYFQZdMMmNw0DDS4XCVp6XXqNqijRJnAVeCFDKeIHRnUuttBzA2KRsOZ54cUbq88UczgnlGrh1SlvHjSw8L2yZoIaXRmrjfCIuSCMIZPqx6Xsx3cri8o_5K3IYxB4qtLi5JvXVcg03ZN99rWafy9t4Wt_oi5cH
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aRT2pWPHbCF5Tk012m3iTtaXFtS20iLeSzU6giK3U1t_vZNtaPHjwFgIhMJPJzCTz5hFya7mV2irPMNOpM-WEY1pJYDlEOR6pvEggL8km6p2Ofn01vSVYvcTCAEBZfAa1MCz_8ouJm4enMrRwo2P00ZtkK1Yq4gu41g65WXbOvGun7TTtJxiVhNQvimurFb-4U0rX0dz_56YHpLoG4dHej3s5JBswPiL9UJfBHkNL_kU7Ddp4oeHLPHAN0S7a__sSWHlPM8BjWpIQ0Ydev0sxPKV4A77RbGILuq57qZJBszFIW2zJi8BGRs6YlQaDMCWMw1TDqwTFnXhReI3GKWPOnQWRS0gS4yXmdy62ygoAY3kROcG9PCaV8WQMJ4QKDcK6RFsnjMq9yG3B0cYLo7RxnstTUg0CGX4sOl8MV7I4-2P-muy2Bs_ZMGt3ns7JXlBBqNcS5oJUZtM5XJJt9zUbfU6vSs19A_Rhmk4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Conference+on+Intelligent+Computing+and+Control+Systems+%28ICICCS%29&rft.atitle=High-Dimensional+EV+Charging+Optimization%3A+Leveraging+APSO+for+Peak+Load+Management&rft.au=Sriabisha%2C+R.&rft.au=Aravindkumar%2C+J.&rft.date=2025-03-19&rft.pub=IEEE&rft.spage=185&rft.epage=191&rft_id=info:doi/10.1109%2FICICCS65191.2025.10985256&rft.externalDocID=10985256