MDPR-Net: Dynamic Target Interference Removal and Autonomous Vehicle Place Recognition Network for Multi-View Images
Accurate navigation and localization are essential for autonomous vehicles in complex environments. Visual place recognition (VPR) provides an efficient and cost-effective method for environmental representation. Our study introduces MDPR-Net, an autonomous vehicle positioning network utilizing 360-...
Uloženo v:
| Vydáno v: | IEEE International Conference on Industrial Technology (Online) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
26.03.2025
|
| Témata: | |
| ISSN: | 2643-2978 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Accurate navigation and localization are essential for autonomous vehicles in complex environments. Visual place recognition (VPR) provides an efficient and cost-effective method for environmental representation. Our study introduces MDPR-Net, an autonomous vehicle positioning network utilizing 360-degree images. The dynamic interference removal module (DIR) eliminates dynamic targets filtering, ensuring precise environmental perception. Following DIR, a multi-view image encoder module (MIE) encodes the filtered panoramic images with shared weights, capturing comprehensive features. The image-relation attention module (IRA) then associates these features across multi-view images, enhancing the model's ability to understand the scene contextually. This approach is demonstrated on the nuScenes dataset, yielding promising results. |
|---|---|
| ISSN: | 2643-2978 |
| DOI: | 10.1109/ICIT63637.2025.10965253 |