MDPR-Net: Dynamic Target Interference Removal and Autonomous Vehicle Place Recognition Network for Multi-View Images
Accurate navigation and localization are essential for autonomous vehicles in complex environments. Visual place recognition (VPR) provides an efficient and cost-effective method for environmental representation. Our study introduces MDPR-Net, an autonomous vehicle positioning network utilizing 360-...
Saved in:
| Published in: | IEEE International Conference on Industrial Technology (Online) pp. 1 - 6 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
26.03.2025
|
| Subjects: | |
| ISSN: | 2643-2978 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate navigation and localization are essential for autonomous vehicles in complex environments. Visual place recognition (VPR) provides an efficient and cost-effective method for environmental representation. Our study introduces MDPR-Net, an autonomous vehicle positioning network utilizing 360-degree images. The dynamic interference removal module (DIR) eliminates dynamic targets filtering, ensuring precise environmental perception. Following DIR, a multi-view image encoder module (MIE) encodes the filtered panoramic images with shared weights, capturing comprehensive features. The image-relation attention module (IRA) then associates these features across multi-view images, enhancing the model's ability to understand the scene contextually. This approach is demonstrated on the nuScenes dataset, yielding promising results. |
|---|---|
| AbstractList | Accurate navigation and localization are essential for autonomous vehicles in complex environments. Visual place recognition (VPR) provides an efficient and cost-effective method for environmental representation. Our study introduces MDPR-Net, an autonomous vehicle positioning network utilizing 360-degree images. The dynamic interference removal module (DIR) eliminates dynamic targets filtering, ensuring precise environmental perception. Following DIR, a multi-view image encoder module (MIE) encodes the filtered panoramic images with shared weights, capturing comprehensive features. The image-relation attention module (IRA) then associates these features across multi-view images, enhancing the model's ability to understand the scene contextually. This approach is demonstrated on the nuScenes dataset, yielding promising results. |
| Author | Zhao, Fenglei Li, Zhongzheng Kong, Dong Zhang, Shuo Sun, Xiaoyu Zhang, Liye |
| Author_xml | – sequence: 1 givenname: Shuo surname: Zhang fullname: Zhang, Shuo email: shuo0028@sdust.edu.cn organization: College of Transportation, Shandong University of Science and Technology,Qingdao,China – sequence: 2 givenname: Zhongzheng orcidid: 0009-0005-2172-5283 surname: Li fullname: Li, Zhongzheng organization: College of Transportation, Shandong University of Science and Technology,Qingdao,China – sequence: 3 givenname: Xiaoyu orcidid: 0009-0005-6934-6485 surname: Sun fullname: Sun, Xiaoyu organization: College of Transportation, Shandong University of Science and Technology,Qingdao,China – sequence: 4 givenname: Fenglei orcidid: 0009-0009-0469-2693 surname: Zhao fullname: Zhao, Fenglei organization: College of Transportation, Shandong University of Science and Technology,Qingdao,China – sequence: 5 givenname: Dong orcidid: 0000-0002-1864-423X surname: Kong fullname: Kong, Dong organization: College of Transportation, Shandong University of Science and Technology,Qingdao,China – sequence: 6 givenname: Liye orcidid: 0000-0003-0965-2374 surname: Zhang fullname: Zhang, Liye organization: College of Transportation, Shandong University of Science and Technology,Qingdao,China |
| BookMark | eNo1kF1LwzAYhaMoOOf-gWD-QGeaN0kb78bmR2HTMcpuR0zfzmibSJs59u8dflwdeDg8cM4lOfPBIyE3KRunKdO3xbQoFSjIxpxxOT4iJbmEEzLSmc4BUslTLdkpGXAlIOE6yy_IqO_fGWPAGQihBiQuZstV8ozxjs4O3rTO0tJ0W4y08BG7Gjv0FukK2_BlGmp8RSe7GHxow66na3xztkG6bMxPyYatd9EFT4_Gfeg-aB06utg10SVrh3tatGaL_RU5r03T4-gvh6R8uC-nT8n85bGYTuaJ0xATjags57Wyr6kQUleguBEC7HEnZCgtZkZYTKvc5qxGkLkRTB2RrjKhkcOQXP9qHSJuPjvXmu6w-f8JvgFWIV9- |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICIT63637.2025.10965253 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331521950 |
| EISSN | 2643-2978 |
| EndPage | 6 |
| ExternalDocumentID | 10965253 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-9ee6c22f6cb14459d362a443c96537e5ce7a4ce1d8c80fe358a406a4c9d749e23 |
| IEDL.DBID | RIE |
| IngestDate | Wed Apr 30 05:50:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-9ee6c22f6cb14459d362a443c96537e5ce7a4ce1d8c80fe358a406a4c9d749e23 |
| ORCID | 0000-0002-1864-423X 0000-0003-0965-2374 0009-0005-6934-6485 0009-0005-2172-5283 0009-0009-0469-2693 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10965253 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-March-26 |
| PublicationDateYYYYMMDD | 2025-03-26 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-March-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Conference on Industrial Technology (Online) |
| PublicationTitleAbbrev | ICIT |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003203446 |
| Score | 1.9034867 |
| Snippet | Accurate navigation and localization are essential for autonomous vehicles in complex environments. Visual place recognition (VPR) provides an efficient and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Autonomous vehicles Context modeling Dynamic targets filtering Filters Image recognition Interference Location awareness Navigation Target recognition Vehicle dynamics Visual place recognition |
| Title | MDPR-Net: Dynamic Target Interference Removal and Autonomous Vehicle Place Recognition Network for Multi-View Images |
| URI | https://ieeexplore.ieee.org/document/10965253 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQALryLe8sDq0tqOE7OhlopKEEVVVHWrEuciOpCgNoW_z9lpCgwMbJGVWInPvle-746Q2zTv9ROpMpYGSjKZgs902kNlKKUxivdEljii8LMfhsFspqMNWd1xYQDAgc-gay_dv_ysNGubKsMTrpXHPdEiLd9XNVlrm1AR3FavUxsMF956Nx6MYyWU8DEM5F63efpXHxVnRkYH_3yBQ9L5JuTRaGtqjsgOFMdk_0ctwRNSvQyjCQuhuqfDuss8jR3Km7qkXzPLBN5K3Fw0KTL6sK4spQFjfzqFV7uBaGSz6nTSoIrKgoY1Tpyic0sdW5dNF_BJx2-oiFYdEo8e48ET27RUYAstKqYBlOE8VybFQMrTGZqvREph8LOED54BP5EG-llggl4OwgsSNPg4pDNfauDilLSLsoAzQnMUZYq-F1e5ltygylc8R3chEIFCBZqfk45dv_l7XTRj3izdxR_jl2TPSsnCu7i6Iu1quYZrsms-qsVqeeNE_QWddaqF |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIAELryLeeGBNSW3HidlQoWpEG1VVVHWrEuciOjRBbQp_n7P7AAYGtshKrMRn3yvfd0fIfZq7zUTIzEkDKRyRgu-o1EVlKITWkrk8SyxRuOtHUTAaqf6KrG65MABgwWfQMJf2X35W6oVJleEJV9JjHt8mO54QzF3StTYpFc5M_Tq5QnHhzQ9hK4wll9zHQJB5jfXzvzqpWEPSPvznKxyR-jclj_Y3xuaYbEFxQg5-VBM8JVXvuT9wIqge6fOyzzyNLc6b2rTfepYBTEvcXjQpMvq0qAypAaN_OoQ3s4Vo3-TV6WCNKyoLGi2R4hTdW2r5us5wAp80nKIqmtdJ3H6JWx1n1VTBmSheOQpAasZyqVMMpTyVoQFLhOAaP4v74GnwE6GhmQU6cHPgXpCgycchlflCAeNnpFaUBZwTmqMwU_S-mMyVYBqVvmQ5OgwBDySq0PyC1M36jd-XZTPG66W7_GP8jux14l533A2j1yuybyRmwF5MXpNaNVvADdnVH9VkPru1Yv8CqTetzA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Industrial+Technology+%28Online%29&rft.atitle=MDPR-Net%3A+Dynamic+Target+Interference+Removal+and+Autonomous+Vehicle+Place+Recognition+Network+for+Multi-View+Images&rft.au=Zhang%2C+Shuo&rft.au=Li%2C+Zhongzheng&rft.au=Sun%2C+Xiaoyu&rft.au=Zhao%2C+Fenglei&rft.date=2025-03-26&rft.pub=IEEE&rft.eissn=2643-2978&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICIT63637.2025.10965253&rft.externalDocID=10965253 |