Hierarchical Interpretable Construction Algorithm for Data Analysis
In low-computation modeling tasks, the Incremental Constructive Algorithm (ICA) shows good performance. However, it relying on horizontal network expansion for model building limits its mapping ability. Thus, it struggles to capture deep feature relations in complex data and can not meet accuracy ne...
Gespeichert in:
| Veröffentlicht in: | 2025 30th International Conference on Automation and Computing (ICAC) S. 1 - 5 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
27.08.2025
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In low-computation modeling tasks, the Incremental Constructive Algorithm (ICA) shows good performance. However, it relying on horizontal network expansion for model building limits its mapping ability. Thus, it struggles to capture deep feature relations in complex data and can not meet accuracy needs in complex predictions. This paper proposes the Hierarchical Incremental Construction Algorithm (HICA) by combining ICA interpretability control strategy and DNNs deep stacking structure. HICA has hierarchical propagation. It uses the previous layer residual as the next layer predicted value and the previous hidden layer output matrix as input. It can dynamically add hidden layers and iteratively replace actual outputs with expected ones for better generalization. Nodes are selected by an interpretability-based geometric control strategy. Experiments prove HICA accuracy advantage and lower computational cost. |
|---|---|
| AbstractList | In low-computation modeling tasks, the Incremental Constructive Algorithm (ICA) shows good performance. However, it relying on horizontal network expansion for model building limits its mapping ability. Thus, it struggles to capture deep feature relations in complex data and can not meet accuracy needs in complex predictions. This paper proposes the Hierarchical Incremental Construction Algorithm (HICA) by combining ICA interpretability control strategy and DNNs deep stacking structure. HICA has hierarchical propagation. It uses the previous layer residual as the next layer predicted value and the previous hidden layer output matrix as input. It can dynamically add hidden layers and iteratively replace actual outputs with expected ones for better generalization. Nodes are selected by an interpretability-based geometric control strategy. Experiments prove HICA accuracy advantage and lower computational cost. |
| Author | Duan, MingZi Dai, Wei Nan, Jing |
| Author_xml | – sequence: 1 givenname: Wei surname: Dai fullname: Dai, Wei email: weidai@cumt.edu.cn organization: China University of Mining and Technology,School of Information and Control Engineering,Xuzhou,China – sequence: 2 givenname: MingZi surname: Duan fullname: Duan, MingZi email: mingziduan@cumt.edu.cn organization: China University of Mining and Technology,School of Information and Control Engineering,Xuzhou,China – sequence: 3 givenname: Jing surname: Nan fullname: Nan, Jing email: jingnan@cumt.edu.cn organization: China University of Mining and Technology,School of Information and Control Engineering,Xuzhou,China |
| BookMark | eNo1j8tOwzAQRY0ECyj9AyT8Ayl-TeJZRuHRSpVYwL5ynDG1lDqVYxb9eyIBqyudxdG5d-w6TYkYe5RiI6XAp13XdjXoBjdKKFiYxBpqccXW2KDVWoICA_qWddtI2WV_jN6NfJcK5XOm4vqReDelueRvX-KUeDt-TTmW44mHKfNnVxxvkxsvc5zv2U1w40zrv12xj9eXz25b7d_flpB9FVGXCr0lUGi065U0FEIP2APZRgtjBZlhiVTeBjTSoAEwXhhthtDYWkgx6BV7-LVGIjqcczy5fDn8P9M_87dH9g |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICAC65379.2025.11196560 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331525453 |
| EndPage | 5 |
| ExternalDocumentID | 11196560 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-9c8e52943ab214effb59b5e8730480e4d1112c8f941494554c0434df786010d3 |
| IEDL.DBID | RIE |
| IngestDate | Sat Oct 25 03:16:25 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-9c8e52943ab214effb59b5e8730480e4d1112c8f941494554c0434df786010d3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_11196560 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Aug.-27 |
| PublicationDateYYYYMMDD | 2025-08-27 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug.-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 30th International Conference on Automation and Computing (ICAC) |
| PublicationTitleAbbrev | ICAC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.9198035 |
| Snippet | In low-computation modeling tasks, the Incremental Constructive Algorithm (ICA) shows good performance. However, it relying on horizontal network expansion for... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Computational efficiency Computational modeling Convergence Data analysis Geometry geometry control strategy Heuristic algorithms hierarchical deep structure Interpretable constructive algorithm Network architecture Prediction algorithms Stacking |
| Title | Hierarchical Interpretable Construction Algorithm for Data Analysis |
| URI | https://ieeexplore.ieee.org/document/11196560 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVoxcAEiCDe8sCaPvyIfccqUJWlqgRDt8qxr6FSSREEvh_bbagYGNgiK5J9bflx7HvOIeSWWRvgDZi84BULAIWHdbByNlcgw4gb7Q26ZDahplM9n8NsS1ZPXBhETMln2Iuf6S3fre1nvCrrh3kJUSymQzpKFRuy1jZnaziA_kM5KgvJVeSfMNlr__7lm5K2jfHhPys8ItmOgEdnP1vLMdnD-oSUk2VkCyfzkhXdZQtWK6TRd7NVgqWj1fM6YP6XVxpOpPTONIa22iMZeRzfP5WTfOuBkC-BNzlYjZKB4KZiQ4HeVxIqiTrMS6EHKFxoIbPagwhIR4SjgR0ILpxXOgItx09Jt17XeEYoRGE-5aS3BoQpwEjJULBhYaLPNPpzksX4F28bkYtFG_rFH-WX5CD2crxeZeqKdEOMeE327Vez_Hi_SUPzDblnkCI |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSgMxFL1oFXSlYsW3WbidPvKYSZZltLRYS8EuuiuZ5EYLfYhWv98kzlhcuHA3hIHkJuRxknvOAbilxnh4o3SSsoJ6gML8OlhYk2RK-BHX0mm00WwiGw7lZKJGJVk9cmEQMSafYSN8xrd8uzIf4aqs6eelCmIx27ATrLNKulaZtdVuqWY_7-SpYFlgoFDRqP7_5ZwSN47uwT-rPIT6hoJHRj-byxFs4fIY8t4s8IWjfcmcbPIFizmS4LxZacGSzvx55VH_y4L4Mym502tNKvWROjx178d5LyldEJKZYutEGYmCKs50QdscnSuEKgRKPzO5bCG3voXUSKe4xzrcHw5MizNuXSYD1LLsBGrL1RJPgaggzZdZ4YxWXKdKC0GR03aqg9M0ujOoh_inr98yF9Mq9PM_ym9grzd-HEwH_eHDBeyHHg-XrTS7hJqPF69g13yuZ-9v13GYvgBuHZNr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+30th+International+Conference+on+Automation+and+Computing+%28ICAC%29&rft.atitle=Hierarchical+Interpretable+Construction+Algorithm+for+Data+Analysis&rft.au=Dai%2C+Wei&rft.au=Duan%2C+MingZi&rft.au=Nan%2C+Jing&rft.date=2025-08-27&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICAC65379.2025.11196560&rft.externalDocID=11196560 |