A Generative Comparative Study of Industrial Design Based on AIGC Tools and Deep Learning

With the rapid advancement of artificial intelligence-generated content (AIGC) technology, the field of industrial design is undergoing unprecedented transformations. By leveraging deep learning algorithms and generative models, AIGC tools can autonomously generate creative design solutions, offerin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 IEEE 3rd International Conference on Image Processing and Computer Applications (ICIPCA) s. 1619 - 1622
Hlavní autoři: Jiang, Yuhan, Yao, Xin
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 28.06.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the rapid advancement of artificial intelligence-generated content (AIGC) technology, the field of industrial design is undergoing unprecedented transformations. By leveraging deep learning algorithms and generative models, AIGC tools can autonomously generate creative design solutions, offering designers inspiration and accelerating product development. However, the practical impact of AIGC tools differs significantly from traditional design methods. This study aims to compare and analyze the performance of AIGC tools versus traditional industrial design techniques in the generative design process, with a focus on evaluating differences in creativity, efficiency, design quality, and adaptability. Currently, AIGC tools on the market exhibit notable variations in their generative characteristics, and they have been widely adopted in fields such as product design, architectural planning, packaging design, and graphic design. However, no AIGC tools are specifically tailored for industrial equipment styling. Each AIGC tool operates on distinct algorithms and generative features, resulting in different output when processing the same content. Therefore, selecting high-quality, accurate AIGC design tools for industrial equipment design remains a challenging problem that requires further exploration.
AbstractList With the rapid advancement of artificial intelligence-generated content (AIGC) technology, the field of industrial design is undergoing unprecedented transformations. By leveraging deep learning algorithms and generative models, AIGC tools can autonomously generate creative design solutions, offering designers inspiration and accelerating product development. However, the practical impact of AIGC tools differs significantly from traditional design methods. This study aims to compare and analyze the performance of AIGC tools versus traditional industrial design techniques in the generative design process, with a focus on evaluating differences in creativity, efficiency, design quality, and adaptability. Currently, AIGC tools on the market exhibit notable variations in their generative characteristics, and they have been widely adopted in fields such as product design, architectural planning, packaging design, and graphic design. However, no AIGC tools are specifically tailored for industrial equipment styling. Each AIGC tool operates on distinct algorithms and generative features, resulting in different output when processing the same content. Therefore, selecting high-quality, accurate AIGC design tools for industrial equipment design remains a challenging problem that requires further exploration.
Author Yao, Xin
Jiang, Yuhan
Author_xml – sequence: 1
  givenname: Yuhan
  surname: Jiang
  fullname: Jiang, Yuhan
  email: 1534721612@163.com
  organization: Universiti Sains Malaysia,Penang,Malaysia
– sequence: 2
  givenname: Xin
  surname: Yao
  fullname: Yao, Xin
  email: 474314594@qq.com
  organization: Guangxi Eco-engineering Vocational and Technical College,Liuzhou,China
BookMark eNo1j9FKwzAYhSPohc69gRfxATqbpEmTyxq1FgoK9sar8Tf9MwJdMtpO2Ns7cF6dw3fgg3NHrmOKSMgjyzeM5eapsc2nrZRUhdzwnMszZUJLKa_I2pRGC8Ek57pgt-S7ojVGnGAJP0ht2h_g0r-W43CiydMmDsd5mQKM9AXnsIv0GWYcaIq0ampLu5TGmUIczjMeaIswxRB39-TGwzjj-pIr0r29dvY9az_qxlZtFoxYMtPrEpxzWjpViILxIgfJIPdOlo4BV8x5hwoEgNCeGcwVF7ov1WCM74tBrMjDnzYg4vYwhT1Mp-3_YfELi-BQTw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIPCA65645.2025.11138555
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331522841
EndPage 1622
ExternalDocumentID 11138555
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-9b87accc85c64341240a51a0fc57c1a261cfce6a3aa38f19e06238b76d99fb4d3
IEDL.DBID RIE
IngestDate Wed Sep 10 07:40:45 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-9b87accc85c64341240a51a0fc57c1a261cfce6a3aa38f19e06238b76d99fb4d3
PageCount 4
ParticipantIDs ieee_primary_11138555
PublicationCentury 2000
PublicationDate 2025-June-28
PublicationDateYYYYMMDD 2025-06-28
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-28
  day: 28
PublicationDecade 2020
PublicationTitle 2025 IEEE 3rd International Conference on Image Processing and Computer Applications (ICIPCA)
PublicationTitleAbbrev ICIPCA
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9133121
Snippet With the rapid advancement of artificial intelligence-generated content (AIGC) technology, the field of industrial design is undergoing unprecedented...
SourceID ieee
SourceType Publisher
StartPage 1619
SubjectTerms AIGC
Artificial intelligence
Deep learning
Design tools
generative contrast
Graphics
Image reconstruction
Industrial design
Packaging
Planning
Product design
Product development
Usability
Title A Generative Comparative Study of Industrial Design Based on AIGC Tools and Deep Learning
URI https://ieeexplore.ieee.org/document/11138555
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1sEfGkYsVvInjddtP9SHKsq9WClB56qKeSj4kUZLe0W8F_b7K7tXjw4C0kgcALZDLJm_cA7qlOY6UkC5AzFsSobCC8hCvG0qVEhiqs1fVf2XjMZzMxaYrVq1oYRKzIZ9j1zeov3xR645_Ket4WnSdJ0oIWY2ldrHUAd41uZm-UjSbZIPX6KC7x6yfd7fxfzilV4Bge_XPJY-jsSvDI5Ce4nMAe5qfwNiC1TLQ_o0i2E-4mng74RQpLdlYc5LEiZ5AHF6cMKXIyGD1nZFoUH2sic-OGcUkaedX3DkyHT9PsJWi8EYKFiMpAKM6k1ponDuvIO0iHMqEytDphmkqXFmmrMZWRlBG3VGDorjlcsdQIYVVsojNo50WO50Aos-h2jFqldGzQyrCvBY8cjJRLEZsL6HhY5sta_WK-ReTyj_4rOPTgezpVn19Du1xt8Ab29We5WK9uqz37BgFHmYQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGA86RT2pOPFtBK_dmjZpkuOszhXn2KGHeRp5ykDasYfgf2_Sbg4PHryVlBD4PsiXL_k9ALhHKsFSChoYRmmAjbQB9xKuBgvXEmkkTa2u36eDARuN-HBFVq-4MMaYCnxmWv6zesvXpVr6q7K2t0VnhJBtsEMwjsKarrUH7lbKme0szYZpJ_EKKa71i0hrPeOXd0pVOrqH_1z0CDQ3JDw4_Ckvx2DLFCfgrQNroWi_S8F0I90NPSDwC5YWbsw44GMFz4APrlJpWBawkz2nMC_LjzkUhXa_zRSuBFbfmyDvPuVpL1i5IwQTHi8CLhkVSilGXLRj7yEdCoJEaBWhCgnXGCmrTCJiIWJmETehO-gwSRPNuZVYx6egUZSFOQMQUWtczpCVUmFtrAgjxVnswoiY4Fifg6YPy3ha61-M1xG5-GP8Fuz38tf-uJ8NXi7BgU-EB1dF7Ao0FrOluQa76nMxmc9uqvx9AyzdnMs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+3rd+International+Conference+on+Image+Processing+and+Computer+Applications+%28ICIPCA%29&rft.atitle=A+Generative+Comparative+Study+of+Industrial+Design+Based+on+AIGC+Tools+and+Deep+Learning&rft.au=Jiang%2C+Yuhan&rft.au=Yao%2C+Xin&rft.date=2025-06-28&rft.pub=IEEE&rft.spage=1619&rft.epage=1622&rft_id=info:doi/10.1109%2FICIPCA65645.2025.11138555&rft.externalDocID=11138555