Iterative Decoding Algorithms Powered by Deep Learning

In this paper, we analyze the performance of neural belief propagation (BP) decoding on the additive white Gaussian noise (AWGN) channel, compared to the traditional BP algorithm. Previous investigations have shown that assigning pre-trained weights to BP messages can significantly improve the decod...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2025 12th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN) s. 1 - 6
Hlavní autori: Jovanovic, Dimitrije, Ivanis, Predrag
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 09.06.2025
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we analyze the performance of neural belief propagation (BP) decoding on the additive white Gaussian noise (AWGN) channel, compared to the traditional BP algorithm. Previous investigations have shown that assigning pre-trained weights to BP messages can significantly improve the decoding performance in case of high-density parity-check (HDPC) codes, by reducing the negative impact of short cycles. These weights are trained by a neural network whose structure matches the trellis of the decoder. Specifically, we show that medium-density paritycheck (MDPC) codes decoded with neural BP algorithm can achieve lower bit error rate versus HDPC codes with the same codeword length and the same code rate.
DOI:10.1109/IcETRAN66854.2025.11114279