An Improved Adaptive Whale Optimization Algorithm with Multi-Strategy for Optimization Problems

The Whale Optimization Algorithm (WOA) is indeed recognized for its effectiveness in solving complex optimization problems, including NP-hard problems. However, like many metaheuristic algorithms, it has its limitations. Insufficient population diversity and ineffective search strategies are common...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 5th International Conference on Consumer Electronics and Computer Engineering (ICCECE) s. 240 - 244
Hlavní autoři: Zhang, Jiarui, Liu, Qunfeng, Zhi, Yunchao, Zhu, Kanghua
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 28.02.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The Whale Optimization Algorithm (WOA) is indeed recognized for its effectiveness in solving complex optimization problems, including NP-hard problems. However, like many metaheuristic algorithms, it has its limitations. Insufficient population diversity and ineffective search strategies are common challenges that can reduce its performance. We urgently need to introduce effective strategies to alleviate these core shortcomings of WOA. To address the slow convergence, low accuracy, and local optima issues of WOA, this paper proposes an Improved Adaptive Whale Optimization Algorithm with multi-strategy(IWOA). Firstly, enhanced Sine chaotic map was introduced to improve the quality of the initial population. Secondly, the adaptive inertia weights are used to balance the global and local searches, so as to accelerate the convergence of the algorithm. Lastly, the Metropolis criterion is incorporated to strengthen the algorithm's ability to escape local optima. Datasets are used to verify the performance of the improved adaptive whale optimization algorithm in solving problems.
AbstractList The Whale Optimization Algorithm (WOA) is indeed recognized for its effectiveness in solving complex optimization problems, including NP-hard problems. However, like many metaheuristic algorithms, it has its limitations. Insufficient population diversity and ineffective search strategies are common challenges that can reduce its performance. We urgently need to introduce effective strategies to alleviate these core shortcomings of WOA. To address the slow convergence, low accuracy, and local optima issues of WOA, this paper proposes an Improved Adaptive Whale Optimization Algorithm with multi-strategy(IWOA). Firstly, enhanced Sine chaotic map was introduced to improve the quality of the initial population. Secondly, the adaptive inertia weights are used to balance the global and local searches, so as to accelerate the convergence of the algorithm. Lastly, the Metropolis criterion is incorporated to strengthen the algorithm's ability to escape local optima. Datasets are used to verify the performance of the improved adaptive whale optimization algorithm in solving problems.
Author Zhu, Kanghua
Zhang, Jiarui
Zhi, Yunchao
Liu, Qunfeng
Author_xml – sequence: 1
  givenname: Jiarui
  surname: Zhang
  fullname: Zhang, Jiarui
  organization: Dongguan University of Technology,Department of Computer Science and Technology
– sequence: 2
  givenname: Qunfeng
  surname: Liu
  fullname: Liu, Qunfeng
  email: qfliu@dgut.edu.cn
  organization: Dongguan University of Technology,Department of Computer Science and Technology
– sequence: 3
  givenname: Yunchao
  surname: Zhi
  fullname: Zhi, Yunchao
  organization: Dongguan University of Technology,Department of Computer Science and Technology
– sequence: 4
  givenname: Kanghua
  surname: Zhu
  fullname: Zhu, Kanghua
  organization: Dongguan University of Technology,Department of Computer Science and Technology
BookMark eNpVT81KxDAYjKAHXfcNPMQHaM1PkybHUqoWVlZwwWNJ2y-7gbYp2biyPr0F9eBhZphhGJgbdDn5CRC6pySllOiHuiyrspKCCZIywkS6hEpkjFygtc614pyKBZRfo6aYcD3OwZ-gx0Vv5uhOgN8PZgC8Xczovkx0fsLFsPfBxcOIPxfGLx9DdMlbDCbC_oytD__rr8G3A4zHW3RlzXCE9a-u0O6x2pXPyWb7VJfFJnGax0Qrazlp274XoLWgsiVGGwud4B3hYDOjlbSkA9qznIGheQZKiswSIqSinK_Q3c-sA4BmDm404dz83ebfE8xUZw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCECE65250.2025.10985420
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331533113
EndPage 244
ExternalDocumentID 10985420
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-98ff30bbdd5e99516b0a9afec53c03ef4a986f0ce1d272ea174e8654f00568133
IEDL.DBID RIE
IngestDate Thu May 29 05:57:34 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-98ff30bbdd5e99516b0a9afec53c03ef4a986f0ce1d272ea174e8654f00568133
PageCount 5
ParticipantIDs ieee_primary_10985420
PublicationCentury 2000
PublicationDate 2025-Feb.-28
PublicationDateYYYYMMDD 2025-02-28
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb.-28
  day: 28
PublicationDecade 2020
PublicationTitle 2025 5th International Conference on Consumer Electronics and Computer Engineering (ICCECE)
PublicationTitleAbbrev ICCECE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9001225
Snippet The Whale Optimization Algorithm (WOA) is indeed recognized for its effectiveness in solving complex optimization problems, including NP-hard problems....
SourceID ieee
SourceType Publisher
StartPage 240
SubjectTerms Accuracy
adaptive inertia weight
chaotic map
Consumer electronics
Convergence
Flowcharts
Heuristic algorithms
Metaheuristics
Metropolis criterion
NP-hard problem
Search problems
Simulated annealing
Whale Optimization Algorithm
Whale optimization algorithms
Title An Improved Adaptive Whale Optimization Algorithm with Multi-Strategy for Optimization Problems
URI https://ieeexplore.ieee.org/document/10985420
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aRDypWNH6IILXrdsku5scy9Kil9pDwd5KNpnYgt2WPgT_vZPsVunBg7ckDAQyZCbfTL4ZQh65KzgrnI5ElmSRUAbtoBWIeVKF8ipR1hSh2UQ2GMjxWA1rsnrgwgBA-HwGbT8MuXy7MFsfKsMbrmQiGCL0wyxLK7LWMXmo62Y-veR5L--lPlGHwI8l7Z38XueU4Dj6p__c8ow0fyl4dPjjXM7JAZQXZNItaRUFAEu7Vi-9raJvUzTy9BUn85pUSbsf7wtE_dM59XFWGli2UV2I9oviO3VffFh1lVk3yajfG-XPUd0hIZopvomUdI7HRWFtAgqfSmkRa6UdmISbmIMTWsnUxQY6lmUMNKIPkGkinC8AKhGdXpJGuSjhitDYaM4c-m4BWnCjEeh0ZJwqGVvLwOpr0vSHM1lWNTAmu3Np_bF-Q068Ciry9y1pbFZbuCNH5nMzW6_ug-a-AdbsnTY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SRT2pWPFtBK9bt5vsbnIsS6XFWnso2NuSTSa2YLelD8F_72R3q_TgwVMeJAQmZCbfJN8MIQ_MZizIrPJ4HMYelxr1oOGIeSKJ42Uojc6KZBNxvy9GIzmoyOoFFwYAis9n0HDV4i3fzPTaucrwhEsR8gAR-m7IsSzpWvvkvoqc-dhNknbSjtxTHUK_IGxsZmzlTilMx9PRPxc9JvVfEh4d_JiXE7ID-SlJWzkt_QBgaMuoudNW9G2Map6-YmNa0Spp6-N9hrh_PKXO00oLnq1XhaL9onhT3R4-KPPKLOtk-NQeJh2vypHgTSRbeVJYy_wsMyYEiZelKPOVVBZ0yLTPwHIlRWR9DU0TxAEoxB8gopBbFwJUID49I7V8lsM5ob5WLLBovTkozrRCqNMUfiSFb0wARl2QuhNOOi-jYKQbuVz-0X9HDjrDl17a6_afr8ih246SCn5NaqvFGm7Inv5cTZaL22IXvwExT6B9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+5th+International+Conference+on+Consumer+Electronics+and+Computer+Engineering+%28ICCECE%29&rft.atitle=An+Improved+Adaptive+Whale+Optimization+Algorithm+with+Multi-Strategy+for+Optimization+Problems&rft.au=Zhang%2C+Jiarui&rft.au=Liu%2C+Qunfeng&rft.au=Zhi%2C+Yunchao&rft.au=Zhu%2C+Kanghua&rft.date=2025-02-28&rft.pub=IEEE&rft.spage=240&rft.epage=244&rft_id=info:doi/10.1109%2FICCECE65250.2025.10985420&rft.externalDocID=10985420