Comparative Analysis of Deep Learning Algorithms for Image Classification
Image classification is one of the highly explored fields in artificial intelligence and computer vision, due to its widespread applications such as medical image analysis, autonomous cars, geographical classification of satellite photos, and facial recognition. Generally, conventional image classif...
Uloženo v:
| Vydáno v: | 2024 2nd International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
19.12.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Image classification is one of the highly explored fields in artificial intelligence and computer vision, due to its widespread applications such as medical image analysis, autonomous cars, geographical classification of satellite photos, and facial recognition. Generally, conventional image classification models depend upon manual feature extraction, but due to the exponential rise in data volume, manual adjustment is no longer feasible or efficient. This difficulty has led to the adoption of deep learning algorithms, which automate feature extraction and provide benefits such as high processing capacity, efficient feature filtering, and improved classification speed and accuracy. This research compares multiple deeplearning techniques for image classification. The study examines the results, offering a fundamental analysis and discussion of the findings where CNN proved to perform better when compared to other algorithms like GAN, RNN, and DBN with the highest accuracy of 92.8%. |
|---|---|
| AbstractList | Image classification is one of the highly explored fields in artificial intelligence and computer vision, due to its widespread applications such as medical image analysis, autonomous cars, geographical classification of satellite photos, and facial recognition. Generally, conventional image classification models depend upon manual feature extraction, but due to the exponential rise in data volume, manual adjustment is no longer feasible or efficient. This difficulty has led to the adoption of deep learning algorithms, which automate feature extraction and provide benefits such as high processing capacity, efficient feature filtering, and improved classification speed and accuracy. This research compares multiple deeplearning techniques for image classification. The study examines the results, offering a fundamental analysis and discussion of the findings where CNN proved to perform better when compared to other algorithms like GAN, RNN, and DBN with the highest accuracy of 92.8%. |
| Author | Kasetty, Sai Bhargav K, Rajakumar Chowdary, Ginjupalli Pranay Yadav, Varthala Charith Narendra Yalla, Sri Satya |
| Author_xml | – sequence: 1 givenname: Ginjupalli Pranay surname: Chowdary fullname: Chowdary, Ginjupalli Pranay email: ginjupallipranaychowdary@gmail.com organization: V.I.T University,SCOPE,Vellore,Tamilnadu,India – sequence: 2 givenname: Rajakumar surname: K fullname: K, Rajakumar email: rajakumar.krishnan@vit.ac.in organization: V.I.T University,SCOPE,Vellore,Tamilnadu,India – sequence: 3 givenname: Sri Satya surname: Narendra Yalla fullname: Narendra Yalla, Sri Satya email: satyanarendrayalla@gmail.com organization: V.I.T University,SCOPE,Vellore,Tamilnadu – sequence: 4 givenname: Varthala Charith surname: Yadav fullname: Yadav, Varthala Charith email: charithyadavvarthala@gmail.com organization: V.I.T University,SCOPE,Vellore,Tamilnadu,India – sequence: 5 givenname: Sai Bhargav surname: Kasetty fullname: Kasetty, Sai Bhargav email: kasettisai.bhargav@vit.ac.in organization: V.I.T University,SCOPE,Vellore,Tamilnadu |
| BookMark | eNo1j99KwzAcRiPohc69gRfxAVrzP81lqVMLhQnb_UjbX2qgTUZShL29A_XqgwPnwPeAbkMMgNAzJSWlxLwcmv3n7qCEULpkhInyCg3ljN-grdGm4pxKooRk96ht4nK2ya7-G3Ad7HzJPuPo8CvAGXdgU_BhwvU8xeTXryVjFxNuFzsBbmabs3d-uNoxPKI7Z-cM27_doOPb7th8FN3-vW3qrvCGr4WpKAU5qgpUT3VvQTDNwAIXsrJk0KDEqI3qnSbjyConjRyp0loIp1k_aL5BT79ZDwCnc_KLTZfT_0H-A86lS5w |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SCOPES64467.2024.10991323 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331506452 |
| EndPage | 6 |
| ExternalDocumentID | 10991323 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-9811e5d68e6b17bae4272eae3458a0c7e64d796bf70dd28f595d167744f72bc73 |
| IEDL.DBID | RIE |
| IngestDate | Thu May 29 05:57:33 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-9811e5d68e6b17bae4272eae3458a0c7e64d796bf70dd28f595d167744f72bc73 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10991323 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Dec.-19 |
| PublicationDateYYYYMMDD | 2024-12-19 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec.-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 2nd International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES) |
| PublicationTitleAbbrev | SCOPES |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.892896 |
| Snippet | Image classification is one of the highly explored fields in artificial intelligence and computer vision, due to its widespread applications such as medical... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Classification algorithms Data Augmentation Data models Deep learning Deep Learning Models Deep Neural Networks Feature extraction Image classification Manuals Multi-Scale Feature Extraction Signal processing Signal processing algorithms Solid modeling UC Merced land use dataset |
| Title | Comparative Analysis of Deep Learning Algorithms for Image Classification |
| URI | https://ieeexplore.ieee.org/document/10991323 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62iHhSseKbCF633c3meZTaYi-10B56K5tkUgu2W_rw95ukW4sHD95CCARmIDNfZr5vEHrWmjjOrEuMIR6gKEcTqbhOUl1QRlIdJNTjsAnR78vxWA0qsnrkwgBAbD6DZljGWr4tzTZ8lbVCFcejp7yGakLwHVnrBD1VupmtYft90Bn6AM-FB36ENvfnf01OiYGje_bPK89R40DBw4Of4HKBjmBxiXrtg1Y33suJ4NLhV4AlrqRSp_jlc1p6zP8xX2OfkuLe3L8ZOE6_DH1B0RUNNOp2Ru23pJqFkMxUvkmUzDJglkvgOhO6AEoEgQJyymSRGgGcWuFt7ERqLZGOKWYz7lM76gTRRuRXqL4oF3CNsGQ0AyMyZaWjHn3p3HgvCs3ytCi40DeoEcwwWe7ULiZ7C9z-sX-HToOxQ4tHpu5RfbPawgM6Nl-b2Xr1GH30DfhflFw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aRT2pWPFtBK_b7maTTXKU2tJirYX20FvZJJNasA_68PebxK3FgwdvIRACM5CZLzPzfQg9KkVsxoyNtCYOoEhLIyEzFcUqp4zEylOoB7EJ3umIwUB2i2H1MAsDAKH5DCp-GWr5ZqbX_qus6qs4Dj2lu2jPS2cV41oH6KFgzqz2am_des-F-Iw76EdoZXPil3ZKCB2N439eeoLK2yE83P0JL6doB6ZnqFXbsnXjDaEInln8DDDHBVnqCD99jGYO9b9Pltglpbg1ca8GDvqXvjMoOKOM-o16v9aMCjWEaCzTVSRFkgAzmYBMJVzlQAknkENKmchjzSGjhjsrWx4bQ4Rlkpkkc8kdtZwozdNzVJrOpnCBsGA0Ac0TaYSlDn-pVDs_csXSOM8zri5R2ZthOP_muxhuLHD1x_49Omz2X9vDdqvzco2OvOF9w0cib1BptVjDLdrXn6vxcnEX_PUF42qXpQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+2nd+International+Conference+on+Signal+Processing%2C+Communication%2C+Power+and+Embedded+System+%28SCOPES%29&rft.atitle=Comparative+Analysis+of+Deep+Learning+Algorithms+for+Image+Classification&rft.au=Chowdary%2C+Ginjupalli+Pranay&rft.au=K%2C+Rajakumar&rft.au=Narendra+Yalla%2C+Sri+Satya&rft.au=Yadav%2C+Varthala+Charith&rft.date=2024-12-19&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSCOPES64467.2024.10991323&rft.externalDocID=10991323 |