Comparative Analysis of Deep Learning Algorithms for Image Classification

Image classification is one of the highly explored fields in artificial intelligence and computer vision, due to its widespread applications such as medical image analysis, autonomous cars, geographical classification of satellite photos, and facial recognition. Generally, conventional image classif...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2024 2nd International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES) s. 1 - 6
Hlavní autori: Chowdary, Ginjupalli Pranay, K, Rajakumar, Narendra Yalla, Sri Satya, Yadav, Varthala Charith, Kasetty, Sai Bhargav
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 19.12.2024
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Image classification is one of the highly explored fields in artificial intelligence and computer vision, due to its widespread applications such as medical image analysis, autonomous cars, geographical classification of satellite photos, and facial recognition. Generally, conventional image classification models depend upon manual feature extraction, but due to the exponential rise in data volume, manual adjustment is no longer feasible or efficient. This difficulty has led to the adoption of deep learning algorithms, which automate feature extraction and provide benefits such as high processing capacity, efficient feature filtering, and improved classification speed and accuracy. This research compares multiple deeplearning techniques for image classification. The study examines the results, offering a fundamental analysis and discussion of the findings where CNN proved to perform better when compared to other algorithms like GAN, RNN, and DBN with the highest accuracy of 92.8%.
AbstractList Image classification is one of the highly explored fields in artificial intelligence and computer vision, due to its widespread applications such as medical image analysis, autonomous cars, geographical classification of satellite photos, and facial recognition. Generally, conventional image classification models depend upon manual feature extraction, but due to the exponential rise in data volume, manual adjustment is no longer feasible or efficient. This difficulty has led to the adoption of deep learning algorithms, which automate feature extraction and provide benefits such as high processing capacity, efficient feature filtering, and improved classification speed and accuracy. This research compares multiple deeplearning techniques for image classification. The study examines the results, offering a fundamental analysis and discussion of the findings where CNN proved to perform better when compared to other algorithms like GAN, RNN, and DBN with the highest accuracy of 92.8%.
Author Kasetty, Sai Bhargav
K, Rajakumar
Chowdary, Ginjupalli Pranay
Yadav, Varthala Charith
Narendra Yalla, Sri Satya
Author_xml – sequence: 1
  givenname: Ginjupalli Pranay
  surname: Chowdary
  fullname: Chowdary, Ginjupalli Pranay
  email: ginjupallipranaychowdary@gmail.com
  organization: V.I.T University,SCOPE,Vellore,Tamilnadu,India
– sequence: 2
  givenname: Rajakumar
  surname: K
  fullname: K, Rajakumar
  email: rajakumar.krishnan@vit.ac.in
  organization: V.I.T University,SCOPE,Vellore,Tamilnadu,India
– sequence: 3
  givenname: Sri Satya
  surname: Narendra Yalla
  fullname: Narendra Yalla, Sri Satya
  email: satyanarendrayalla@gmail.com
  organization: V.I.T University,SCOPE,Vellore,Tamilnadu
– sequence: 4
  givenname: Varthala Charith
  surname: Yadav
  fullname: Yadav, Varthala Charith
  email: charithyadavvarthala@gmail.com
  organization: V.I.T University,SCOPE,Vellore,Tamilnadu,India
– sequence: 5
  givenname: Sai Bhargav
  surname: Kasetty
  fullname: Kasetty, Sai Bhargav
  email: kasettisai.bhargav@vit.ac.in
  organization: V.I.T University,SCOPE,Vellore,Tamilnadu
BookMark eNo1j99KwzAcRiPohc69gRfxAVrzP81lqVMLhQnb_UjbX2qgTUZShL29A_XqgwPnwPeAbkMMgNAzJSWlxLwcmv3n7qCEULpkhInyCg3ljN-grdGm4pxKooRk96ht4nK2ya7-G3Ad7HzJPuPo8CvAGXdgU_BhwvU8xeTXryVjFxNuFzsBbmabs3d-uNoxPKI7Z-cM27_doOPb7th8FN3-vW3qrvCGr4WpKAU5qgpUT3VvQTDNwAIXsrJk0KDEqI3qnSbjyConjRyp0loIp1k_aL5BT79ZDwCnc_KLTZfT_0H-A86lS5w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SCOPES64467.2024.10991323
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331506452
EndPage 6
ExternalDocumentID 10991323
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-9811e5d68e6b17bae4272eae3458a0c7e64d796bf70dd28f595d167744f72bc73
IEDL.DBID RIE
IngestDate Thu May 29 05:57:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-9811e5d68e6b17bae4272eae3458a0c7e64d796bf70dd28f595d167744f72bc73
PageCount 6
ParticipantIDs ieee_primary_10991323
PublicationCentury 2000
PublicationDate 2024-Dec.-19
PublicationDateYYYYMMDD 2024-12-19
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-19
  day: 19
PublicationDecade 2020
PublicationTitle 2024 2nd International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES)
PublicationTitleAbbrev SCOPES
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.89279
Snippet Image classification is one of the highly explored fields in artificial intelligence and computer vision, due to its widespread applications such as medical...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Classification algorithms
Data Augmentation
Data models
Deep learning
Deep Learning Models
Deep Neural Networks
Feature extraction
Image classification
Manuals
Multi-Scale Feature Extraction
Signal processing
Signal processing algorithms
Solid modeling
UC Merced land use dataset
Title Comparative Analysis of Deep Learning Algorithms for Image Classification
URI https://ieeexplore.ieee.org/document/10991323
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62iHhSseKbCF7T7iObSY5SWyxILbSH3spmM6kF2y19-PtN0q3iwYO3kAQCMyQzk5nvG0IejffaI8wZQqoZFzJiUhvDfEbLRQ9uJQ-afoV-X47HalCB1QMWBhFD8Rk2_TDk8k1ZbP1XWctncVz0lNZIDUDswFpH5KHizWwN22-DztAZeAEu8Et4c7__V-eUYDi6J_888pQ0fiB4dPBtXM7IAS7OSa_9w9VN93QitLT0GXFJK6rUKX36mJYu5n-fr6lzSWlv7t4MGrpf-rqgoIoGGXU7o_YLq3ohsJlKN0zJOMbMCIlCx6Bz5AkkmGPKM5lHBaDgBpTQFiJjEmkzlZlYONeOW0h0AekFqS_KBV4SmmEkrIe7utvIlS20FSo2nANCoVMLV6ThxTBZ7tguJnsJXP8xf0OOvbB9iUesbkl9s9riHTksPjez9eo-6OgLQ8qTxw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oGvWkRoxva-J1YR_ddns0CIGISAIHbmS7nQKJsISHv9-2LBIPHrw1bZomM2lnpjPfNwDPynrtPqYe8kh6lCW-l0ilPJvRMtGDWUmdptu800kGA9EtwOoOC4OIrvgMK3bocvkqz9b2q6xqszgmeor24SCmNPQ3cK0jeCqYM6u92ke33jMmnnET-oW0st3xq3eKMx2N038eegblHQiPdH_Myzns4ewCWrUdWzfZEoqQXJNXxDkpyFJH5OVzlJuofzxdEuOUktbUvBrE9b-0lUFOGWXoN-r9WtMruiF4ExGtPJEEAcaKJchkwGWKNOQhphjROEn9jCOjigsmNfeVChMdi1gFzDh3VPNQZjy6hNIsn-EVkBh9pi3g1dxHKnQmNROBopQjz2Sk-TWUrRiG8w3fxXArgZs_5h_huNl_bw_brc7bLZxYwduCj0DcQWm1WOM9HGZfq8ly8eD09Q0j4pcO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+2nd+International+Conference+on+Signal+Processing%2C+Communication%2C+Power+and+Embedded+System+%28SCOPES%29&rft.atitle=Comparative+Analysis+of+Deep+Learning+Algorithms+for+Image+Classification&rft.au=Chowdary%2C+Ginjupalli+Pranay&rft.au=K%2C+Rajakumar&rft.au=Narendra+Yalla%2C+Sri+Satya&rft.au=Yadav%2C+Varthala+Charith&rft.date=2024-12-19&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSCOPES64467.2024.10991323&rft.externalDocID=10991323