Spatiotemporal Knowledge-Driven Evolutionary Algorithm for Dynamic Constrained Multiobjective Optimization

Dynamic constrained multiobjective optimization problems (DCMOPs) present significant challenges due to timevarying objectives and constraints. To address these challenges, we propose a spatiotemporal knowledge-driven evolutionary algorithm (SKEA) that leverages both historical and current environme...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 7th International Conference on Data-driven Optimization of Complex Systems (DOCS) s. 271 - 276
Hlavní autoři: Liu, Zhi, Song, Wei
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 19.08.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Dynamic constrained multiobjective optimization problems (DCMOPs) present significant challenges due to timevarying objectives and constraints. To address these challenges, we propose a spatiotemporal knowledge-driven evolutionary algorithm (SKEA) that leverages both historical and current environmental knowledge to guide the search process. Specifically, temporal knowledge is acquired from the most similar historical environment by measuring changes in objective values and constraint violations. Based on this knowledge, the main and auxiliary populations are reconstructed to adapt quickly to the new environment. Furthermore, the populations are divided into four categories according to feasibility and dominance, including nondominated feasible solutions, dominated feasible solutions, nondominated infeasible solutions, and dominated infeasible solutions. By constructing valuable solution pairs among these categories, four single hidden layer neural networks are trained to predict high-quality learning targets for each type of solution. These predicted targets are then used to guide the mutation operation in a modified differential evolution algorithm, while category-based crossover enhances local exploration. The experimental results on various benchmarks verify that, compared with several state-of-the-art algorithms, the proposed SKEA achieves the most competitive performance in solving DCMOPs.
AbstractList Dynamic constrained multiobjective optimization problems (DCMOPs) present significant challenges due to timevarying objectives and constraints. To address these challenges, we propose a spatiotemporal knowledge-driven evolutionary algorithm (SKEA) that leverages both historical and current environmental knowledge to guide the search process. Specifically, temporal knowledge is acquired from the most similar historical environment by measuring changes in objective values and constraint violations. Based on this knowledge, the main and auxiliary populations are reconstructed to adapt quickly to the new environment. Furthermore, the populations are divided into four categories according to feasibility and dominance, including nondominated feasible solutions, dominated feasible solutions, nondominated infeasible solutions, and dominated infeasible solutions. By constructing valuable solution pairs among these categories, four single hidden layer neural networks are trained to predict high-quality learning targets for each type of solution. These predicted targets are then used to guide the mutation operation in a modified differential evolution algorithm, while category-based crossover enhances local exploration. The experimental results on various benchmarks verify that, compared with several state-of-the-art algorithms, the proposed SKEA achieves the most competitive performance in solving DCMOPs.
Author Song, Wei
Liu, Zhi
Author_xml – sequence: 1
  givenname: Zhi
  surname: Liu
  fullname: Liu, Zhi
  email: liuzhi@stu.jiangnan.edu.cn
  organization: Jiangnan University,School of Artificial Intelligence and Computer Science,Wuxi,China
– sequence: 2
  givenname: Wei
  surname: Song
  fullname: Song, Wei
  email: songwei@jiangnan.edu.cn
  organization: Jiangnan University,School of Artificial Intelligence and Computer Science,Wuxi,China
BookMark eNo1UMFOAjEUrIkeFPkDE_sDi90-tt0eyYJixOwB7qR032LJbrspBYNfb416mslkZt7L3JFr5x0S8pizSZ4z9TSvq7WQBcCEM14kjTOmGFyRsZKqBMgLIRVMb8lhPehofcR-8EF39M35zw6bPWbzYM_o6OLsu1NyOB0udNbtfbDxo6etD3R-cbq3hlbeHWPQ1mFD309dMu8OaGKK03qItrdfPyfcPblpdXfE8R-OyOZ5samW2ap-ea1mq8wqiFnZGiZ0abBVomFC7aTkUyE5SF2AksZIg7JEzU2uGmMgEW6MgIJrIVkjYEQefmstIm6HYPv0-fZ_AfgGuBVZOw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DOCS67533.2025.11200903
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331567934
EndPage 276
ExternalDocumentID 11200903
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-8fc06a8cef96d069b772467237a5397cc7ce78ea2c19dcc3a2c2cc6352a670d63
IEDL.DBID RIE
IngestDate Sat Oct 25 03:16:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-8fc06a8cef96d069b772467237a5397cc7ce78ea2c19dcc3a2c2cc6352a670d63
PageCount 6
ParticipantIDs ieee_primary_11200903
PublicationCentury 2000
PublicationDate 2025-Aug.-19
PublicationDateYYYYMMDD 2025-08-19
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug.-19
  day: 19
PublicationDecade 2020
PublicationTitle 2025 7th International Conference on Data-driven Optimization of Complex Systems (DOCS)
PublicationTitleAbbrev DOCS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9189408
Snippet Dynamic constrained multiobjective optimization problems (DCMOPs) present significant challenges due to timevarying objectives and constraints. To address...
SourceID ieee
SourceType Publisher
StartPage 271
SubjectTerms Current measurement
differential evolution
dynamic constrained multiobjective optimization
environmental match
Evolutionary computation
Heuristic algorithms
Knowledge transfer
Neural networks
Optimization
Prediction algorithms
Robustness
Spatiotemporal phenomena
Transfer learning
Title Spatiotemporal Knowledge-Driven Evolutionary Algorithm for Dynamic Constrained Multiobjective Optimization
URI https://ieeexplore.ieee.org/document/11200903
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEA1VeuipLbX0mxx6jcZkzcex-EGhoIIevMnuJGkVdctWhf77Jtm1pYceegthYWGyO3l5mTcPoUermANHMyISYMT_iYykLBD5SgnT4aGBSRbNJuRwqGYzPa7E6lELY62NxWe2GYbxLt_ksAtUWctjAxp4hRqqSSlKsVZVs9WmutUbdSce_3Luj32s0zw8_cs3JW4bg9N_vvAMNX4EeHj8vbWcoyO7uUDLSax-rppJrfDLgQ4jvSLkLNzfV99RWnzip9Vr7g_-b2vsYSnulcbzOPhzRlcIa3DU3ubZskx5eOSTx7pSZTbQdNCfdp9JZZVAFppviXJARarAOi0MFTrzmDnEncu04wEHgAQrlU0ZtLUB4H7AADzWYKmQ1Ah-ieqbfGOvEObUaaBKC2ZsIoULQlRqnEw0TYwUyTVqhDjN38tmGPNDiG7-mL9FJ2E1Ag3b1neovi129h4dw367-Cge4hJ-AbwHoGg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0UTfSkRozf9uB1obRLP46Gj2BAIIEDN7I77SoEWLMuJP5727JoPHjw1jSbbDLdnb6-zpuH0KORNIGExAEPgQb2T6RBRB2RLyXXdeYamMTebEL0-3IyUcNCrO61MMYYX3xmKm7o7_J1CmtHlVUtNiCOV9hHB846q5BrFVVbNaKqzUFjZBEwY_bgR-uV3fO_nFP8xtE--ecrT1H5R4KHh9-byxnaM6tzNB_5-ueindQCd3eEWNDMXNbCrU3xJUXZJ35avKb26P-2xBaY4ubWeh47h07vC2E09urbNJ5vkx4e2PSxLHSZZTRut8aNTlCYJQQzxfJAJkB4JMEkimvCVWxRs4s8E1HdQg4AAUZIE1GoKQ3A7IACWLRBIy6I5uwClVbpylwizEiigEjFqTah4ImTohKdiFCRUAseXqGyi9P0fdsOY7oL0fUf8w_oqDN-6U17z_3uDTp2K-NI2Zq6RaU8W5s7dAibfPaR3fvl_AJBtqOx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+7th+International+Conference+on+Data-driven+Optimization+of+Complex+Systems+%28DOCS%29&rft.atitle=Spatiotemporal+Knowledge-Driven+Evolutionary+Algorithm+for+Dynamic+Constrained+Multiobjective+Optimization&rft.au=Liu%2C+Zhi&rft.au=Song%2C+Wei&rft.date=2025-08-19&rft.pub=IEEE&rft.spage=271&rft.epage=276&rft_id=info:doi/10.1109%2FDOCS67533.2025.11200903&rft.externalDocID=11200903