EEG-ReMinD: Enhancing Neurodegenerative EEG Decoding through Self-Supervised State Reconstruction-Primed Riemannian Dynamics

The development of EEG decoding algorithms confronts challenges such as data sparsity, subject variability, and the need for precise annotations, all of which are vital for advancing brain-computer interfaces and enhancing the diagnosis of diseases. To address these issues, we propose a novel two-st...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 1 - 5
Hlavní autori: Wang, Zirui, Song, Zhenxi, Guo, Yi, Liu, Yuxin, Xu, Guoyang, Zhang, Min, Zhang, Zhiguo
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 06.04.2025
Predmet:
ISSN:2379-190X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The development of EEG decoding algorithms confronts challenges such as data sparsity, subject variability, and the need for precise annotations, all of which are vital for advancing brain-computer interfaces and enhancing the diagnosis of diseases. To address these issues, we propose a novel two-stage approach named Self-Supervised State Reconstruction-Primed Riemannian Dynamics (EEG-ReMinD), which mitigates reliance on supervised learning and integrates inherent geometric features. This approach efficiently handles EEG data corruptions and reduces the dependency on labels. EEG-ReMinD utilizes self-supervised and geometric learning techniques, along with an attention mechanism, to analyze the temporal dynamics of EEG features within the framework of Riemannian geometry, referred to as Riemannian dynamics. Comparative analyses on both intact and corrupted datasets from two different neurodegenerative disorders underscore the enhanced performance of EEG-ReMinD.
AbstractList The development of EEG decoding algorithms confronts challenges such as data sparsity, subject variability, and the need for precise annotations, all of which are vital for advancing brain-computer interfaces and enhancing the diagnosis of diseases. To address these issues, we propose a novel two-stage approach named Self-Supervised State Reconstruction-Primed Riemannian Dynamics (EEG-ReMinD), which mitigates reliance on supervised learning and integrates inherent geometric features. This approach efficiently handles EEG data corruptions and reduces the dependency on labels. EEG-ReMinD utilizes self-supervised and geometric learning techniques, along with an attention mechanism, to analyze the temporal dynamics of EEG features within the framework of Riemannian geometry, referred to as Riemannian dynamics. Comparative analyses on both intact and corrupted datasets from two different neurodegenerative disorders underscore the enhanced performance of EEG-ReMinD.
Author Wang, Zirui
Song, Zhenxi
Zhang, Zhiguo
Liu, Yuxin
Guo, Yi
Xu, Guoyang
Zhang, Min
Author_xml – sequence: 1
  givenname: Zirui
  surname: Wang
  fullname: Wang, Zirui
  organization: Harbin Institute of Technology,Shenzhen,China
– sequence: 2
  givenname: Zhenxi
  surname: Song
  fullname: Song, Zhenxi
  email: songzhenxi@hit.edu.cn
  organization: Harbin Institute of Technology,Shenzhen,China
– sequence: 3
  givenname: Yi
  surname: Guo
  fullname: Guo, Yi
  organization: Shenzhen People's Hospital,Department of Neurology,Shenzhen,China
– sequence: 4
  givenname: Yuxin
  surname: Liu
  fullname: Liu, Yuxin
  organization: Harbin Institute of Technology,Shenzhen,China
– sequence: 5
  givenname: Guoyang
  surname: Xu
  fullname: Xu, Guoyang
  organization: Harbin Institute of Technology,Shenzhen,China
– sequence: 6
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  organization: Harbin Institute of Technology,Shenzhen,China
– sequence: 7
  givenname: Zhiguo
  surname: Zhang
  fullname: Zhang, Zhiguo
  organization: Harbin Institute of Technology,Shenzhen,China
BookMark eNo1kNFKwzAUhqMouM29gRfxAVKTpm0S72SrU5g61l14N2JyukW2dKTpYODDW1HhwLn4Pn7O-YfowjceELplNGGMqrvnyUNVLTJVFDRJaZonjEopcqHO0FgJJXlOeSFFxs7RIOVCEabo-xUatu0npbQHcoC-ynJGlvDi_PQel36rvXF-g1-hC42FDXgIOroj4N7DUzCN_cFxG5pus8UV7GpSdQcIR9eCxVXUEfCy13wbQ2eiazxZBLfv2dLBXnvvtMfTk9d7Z9prdFnrXQvjvz1Cq8dyNXki87dZ_9ycOMUjkUWWWZErnaU6TzPKpCqYoKnhuRUpFUbxfsSHqrk1xsia81rWAkxhheUS-Ajd_MY6AFgf-nN0OK3_y-LfDapiwg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP49660.2025.10887579
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350368741
EISSN 2379-190X
EndPage 5
ExternalDocumentID 10887579
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i93t-8644d759a42a524018961702c35d7207c93c937b9f3dccc8f33f8f7ec6d7d38e3
IEDL.DBID RIE
IngestDate Wed Nov 19 08:26:49 EST 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-8644d759a42a524018961702c35d7207c93c937b9f3dccc8f33f8f7ec6d7d38e3
PageCount 5
ParticipantIDs ieee_primary_10887579
PublicationCentury 2000
PublicationDate 2025-April-6
PublicationDateYYYYMMDD 2025-04-06
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-6
  day: 06
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2880259
Snippet The development of EEG decoding algorithms confronts challenges such as data sparsity, subject variability, and the need for precise annotations, all of which...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Decoding
Diseases
EEG
Electroencephalography
Geometric Deep Learning
Geometry
Heuristic algorithms
Neurodegenerative Disorders
Riemannian Manifold
Self-supervised Learning
Signal processing
Signal processing algorithms
Speech processing
Supervised learning
Three-dimensional displays
Title EEG-ReMinD: Enhancing Neurodegenerative EEG Decoding through Self-Supervised State Reconstruction-Primed Riemannian Dynamics
URI https://ieeexplore.ieee.org/document/10887579
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LS8MwHMeDGyJ68TXxTQSvmTVpm8Sb7KEeHGXdYbfRJr_MgnbDbZ78402yzunBg9BDKE1LE_J7tPl9vghdB4YKGyVLu8RNRkKT5ySjQInOIYhzV10SKS82wXs9MRzKpCpW97UwAOA3n0HTNf2_fD1RC_epzK5w4fjrsoZqnMfLYq1vsyt4KLbQVQXRvHlq3adpEjr4pM0CadRcdf4lo-K9SHf3n8_fQ411PR5Ovj3NPtqA8gDt_EAJHqLPTueB9OG5KNt3uFO-OIxGOcaevaFh7OHSzrJhex1u25zT3QlXKj04hVdD0sXUGY4ZaOxDUOxS0zVgliROCUDjfgFvTugoK3F7KWc_a6BBtzNoPZJKWYEUks2JsEGQ5pHMQppF1qXfCum47FSxSHMacCWZPXguDdNKKWEYM8JwULHmmglgR6heTko4RljGOmQMTGhsakOjLDcm4NrGoBHjoaFwghpuHEfTJTtjtBrC0z_On6FtN1t-b0x8jur2HeECbaqPeTF7v_Qz_gUfx659
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3LT8IwHMcbRePj4gvj25p4rc52o603w0OIQAhw4Ea29lck0UEEPPnH25YBevBgskOzrMvWpr_H1t_ni9BtYKiwUbK0S9zEJDRJQmIKlOgEgkLiqksi5cUmeLMpej3ZyorVfS0MAPjNZ3Dnmv5fvh6pmftUZle4cPx1uY42nHRWVq61NLyCh2IL3WQYzfta8anTaYUOP2nzQBrdLbr_ElLxfqSy988n2Ef5VUUebi19zQFag_QQ7f6ACR6hr3L5mbShMUxLj7icvjqQRjrAnr6hYeDx0s62YXsdLtms090JZzo9uANvhnRmY2c6JqCxD0KxS05XiFnScloAGreH8O6kjuIUl-aC9pM86lbK3WKVZNoKZCjZlAgbBmkeyTikcWSd-oOQjsxOFYs0pwFXktmDJ9IwrZQShjEjDAdV0FwzAewY5dJRCicIy4IOGQMTGpvc0ChOjAm4tlFoxHhoKJyivBvH_nhOz-gvhvDsj_PXaLvabdT79Vrz5RztuJnzO2UKFyhn3xcu0ab6nA4nH1d-9r8BYu-xxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=EEG-ReMinD%3A+Enhancing+Neurodegenerative+EEG+Decoding+through+Self-Supervised+State+Reconstruction-Primed+Riemannian+Dynamics&rft.au=Wang%2C+Zirui&rft.au=Song%2C+Zhenxi&rft.au=Guo%2C+Yi&rft.au=Liu%2C+Yuxin&rft.date=2025-04-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICASSP49660.2025.10887579&rft.externalDocID=10887579