Adaptive PD Neural Network Tracking Control for the Uncertain Robot Manipulator with Unmatched Disturbance

This paper addressed the tracking control problem of the robot manipulator with uncertainties and unmatched disturbance by PD control based on adaptive neural network. Adaptive control methods can deal with the control problem of systems with nonlinear and uncertain dynamics, which use measured data...

Full description

Saved in:
Bibliographic Details
Published in:IEEE International Conference on Industrial Technology (Online) pp. 1 - 6
Main Authors: Wen, Jingdong, Ren, Ling, Peng, Chenchen, Qi, Runhua
Format: Conference Proceeding
Language:English
Published: IEEE 26.03.2025
Subjects:
ISSN:2643-2978
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper addressed the tracking control problem of the robot manipulator with uncertainties and unmatched disturbance by PD control based on adaptive neural network. Adaptive control methods can deal with the control problem of systems with nonlinear and uncertain dynamics, which use measured data of system trajectory in order to learn and compensate the uncertainties and external disturbances. In this work, a nominal PD control law is used to achieve a sub-optimal performance, and a scheme based on a neural network is implemented to act as a nonlinear compensation whose task is to improve the performance of the nominal controller. A two-degree-of-freedom robot manipulator is proposed to validate the proposed scheme.
AbstractList This paper addressed the tracking control problem of the robot manipulator with uncertainties and unmatched disturbance by PD control based on adaptive neural network. Adaptive control methods can deal with the control problem of systems with nonlinear and uncertain dynamics, which use measured data of system trajectory in order to learn and compensate the uncertainties and external disturbances. In this work, a nominal PD control law is used to achieve a sub-optimal performance, and a scheme based on a neural network is implemented to act as a nonlinear compensation whose task is to improve the performance of the nominal controller. A two-degree-of-freedom robot manipulator is proposed to validate the proposed scheme.
Author Ren, Ling
Wen, Jingdong
Peng, Chenchen
Qi, Runhua
Author_xml – sequence: 1
  givenname: Jingdong
  surname: Wen
  fullname: Wen, Jingdong
  organization: School of Information and Control Engineering, Qingdao University of Technology,Qingdao,China
– sequence: 2
  givenname: Ling
  surname: Ren
  fullname: Ren, Ling
  email: lingren2687@126.com
  organization: School of Information and Control Engineering, Qingdao University of Technology,Qingdao,China
– sequence: 3
  givenname: Chenchen
  surname: Peng
  fullname: Peng, Chenchen
  organization: School of Information and Control Engineering, Qingdao University of Technology,Qingdao,China
– sequence: 4
  givenname: Runhua
  surname: Qi
  fullname: Qi, Runhua
  organization: School of Information and Control Engineering, Qingdao University of Technology,Qingdao,China
BookMark eNo1UFtLwzAYjaLgnPsHgvkDnUm-5vY4OqeDeUHq8_japi5b1440c_jvLahPB84NzrkmF23XOkLuOJtyzuz9MlvmChToqWBCTgdKSZGqMzKx2hoALgW3kp2TkVApJMJqc0Umfb9ljIFgkKZqRLazCg_Rfzn6Nqcv7hiwGSCeurCjecBy59tPmnVtDF1D6y7QuHH0oy1diOhb-t4VXaTP2PrDscE46CcfN4Nhj7HcuIrOfR-PocAhcUMua2x6N_nDMckXD3n2lKxeH5fZbJV4CzExsgRnuWG1MprXwGRZWF6V1lZcMl3KApCJWss61TAsZEIbK-oURYUGHMKY3P7Weufc-hD8HsP3-v8d-AGIPlvT
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIT63637.2025.10965246
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331521950
EISSN 2643-2978
EndPage 6
ExternalDocumentID 10965246
Genre orig-research
GrantInformation_xml – fundername: Shandong Provincial Natural Science Foundation
  grantid: ZR2023QF147
  funderid: 10.13039/501100007129
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-85c3e9180f6871f305cb91dc99d1507c5b3a02f75f473521027892f4a2da83ea3
IEDL.DBID RIE
IngestDate Wed Apr 30 05:50:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-85c3e9180f6871f305cb91dc99d1507c5b3a02f75f473521027892f4a2da83ea3
PageCount 6
ParticipantIDs ieee_primary_10965246
PublicationCentury 2000
PublicationDate 2025-March-26
PublicationDateYYYYMMDD 2025-03-26
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-26
  day: 26
PublicationDecade 2020
PublicationTitle IEEE International Conference on Industrial Technology (Online)
PublicationTitleAbbrev ICIT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203446
Score 1.9032769
Snippet This paper addressed the tracking control problem of the robot manipulator with uncertainties and unmatched disturbance by PD control based on adaptive neural...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptive control
Adaptive Tracking Control
Manipulator dynamics
Measurement uncertainty
Neural networks
Nonlinear dynamical systems
PD control
RBF Neural Network
Robot Manipulator
Service robots
Trajectory
Uncertainty
Title Adaptive PD Neural Network Tracking Control for the Uncertain Robot Manipulator with Unmatched Disturbance
URI https://ieeexplore.ieee.org/document/10965246
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQALryLe8sCa0tixHY-opaIDVYWK1K3yK1IRSqo25fdz5z6AgYEpUeJEkc-X7-783R0h99yGIDo-TZzNTJJ5kycW3ObEK9AswGMsmRWbTajhMJ9M9GiTrB5zYUIIkXwW2nga9_J95VYYKgMN11KwTDZIQym5TtbaBVQ4w-p1csPhgqEPg-5gLLnkCtxAJtrbp3_1UYkw0j_65wcck9Z3Qh4d7aDmhOyF8pQc_qgleEbeH72Z47-LjnoUS26YDzhEjjcFQHIYEqfdNTGdgqVKwfKjb_DiSAmgr5Wtavpiylls6AX3MUILA8CiBbl62oP1sFpYXCQtMu4_jbvPyaaRQjLTvE5y4XjQad4pJLhHBWi4szr1TmuP5qATlpsOK5QosA8x-oAq16zIDAPR8WD4OWmWVRkuCMVdQMatZCYNmc-szgvA97SQXqROCXVJWjhr0_m6VMZ0O2FXf1y_JgcoGyR1MXlDmvViFW7JvvusZ8vFXRTwF3yapks
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60CurFV8W3e_Ca2uwr2aO0lhbbUiRCb2VfgYokpab-fme3D_XgwVNCsglhZyffzOw3MwjdU-0cb9o4MpqpiFmVRhrc5sgmoFmAx75kVmg2kQyH6XgsR6tk9ZAL45wL5DPX8KdhL9-WZuFDZaDhUnDCxDba4YyR5jJdaxNSocTXrxMrFhcMfui1epmggibgCBLeWD__q5NKAJLO4T8_4QjVv1Py8GgDNsdoyxUn6OBHNcFT9PZo1cz_vfCojX3RDfUOh8DyxgBJxgfFcWtJTcdgq2Kw_fArvDiQAvBLqcsKD1QxDS294L6P0cIAsGlBsha3YUUs5tovkzrKOk9ZqxutWilEU0mrKOWGOhmnzVyAg5SDjhstY2uktN4gNFxT1SR5wnPfidh7gUkqSc4UAeFRp-gZqhVl4c4R9vuAhGpBVOyYZVqmOSB8nAvLY5Pw5ALV_axNZstiGZP1hF3-cf0O7XWzQX_S7w2fr9C-l5OneBFxjWrVfOFu0K75rKYf89sg7C9RKKmS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Industrial+Technology+%28Online%29&rft.atitle=Adaptive+PD+Neural+Network+Tracking+Control+for+the+Uncertain+Robot+Manipulator+with+Unmatched+Disturbance&rft.au=Wen%2C+Jingdong&rft.au=Ren%2C+Ling&rft.au=Peng%2C+Chenchen&rft.au=Qi%2C+Runhua&rft.date=2025-03-26&rft.pub=IEEE&rft.eissn=2643-2978&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICIT63637.2025.10965246&rft.externalDocID=10965246