Adaptive PD Neural Network Tracking Control for the Uncertain Robot Manipulator with Unmatched Disturbance

This paper addressed the tracking control problem of the robot manipulator with uncertainties and unmatched disturbance by PD control based on adaptive neural network. Adaptive control methods can deal with the control problem of systems with nonlinear and uncertain dynamics, which use measured data...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Conference on Industrial Technology (Online) s. 1 - 6
Hlavní autoři: Wen, Jingdong, Ren, Ling, Peng, Chenchen, Qi, Runhua
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 26.03.2025
Témata:
ISSN:2643-2978
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper addressed the tracking control problem of the robot manipulator with uncertainties and unmatched disturbance by PD control based on adaptive neural network. Adaptive control methods can deal with the control problem of systems with nonlinear and uncertain dynamics, which use measured data of system trajectory in order to learn and compensate the uncertainties and external disturbances. In this work, a nominal PD control law is used to achieve a sub-optimal performance, and a scheme based on a neural network is implemented to act as a nonlinear compensation whose task is to improve the performance of the nominal controller. A two-degree-of-freedom robot manipulator is proposed to validate the proposed scheme.
ISSN:2643-2978
DOI:10.1109/ICIT63637.2025.10965246