AUV Swarm Confrontation Search Method Based on the MADDPG Algorithm

In this paper, an Autonomous Underwater Vehicle (AUV) swarm confrontation search method based on the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm is proposed for the AUV swarm confrontation search problem. Firstly, the AUV swarm confrontation search model is constructed. Secondl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Control and Decision Conference s. 1415 - 1420
Hlavní autoři: An, Ruiqi, Li, Le, Bai, Miao, Zhang, Pu, Guo, Zhaozhi, Zuo, Ri
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 16.05.2025
Témata:
ISSN:1948-9447
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, an Autonomous Underwater Vehicle (AUV) swarm confrontation search method based on the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm is proposed for the AUV swarm confrontation search problem. Firstly, the AUV swarm confrontation search model is constructed. Secondly, the multiagent state space, action space, observation space, and reward function are designed for the AUV swarm confrontation search problem, and the MADDPG algorithm is adopted to obtain the AUV swarm confrontation search method. Finally, the effectiveness and the generality of the proposed AUV swarm confrontation search method are verified by simulation experiments for the AUV swarm confrontation search tasks under different speed conditions and sonar detection distances.
AbstractList In this paper, an Autonomous Underwater Vehicle (AUV) swarm confrontation search method based on the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm is proposed for the AUV swarm confrontation search problem. Firstly, the AUV swarm confrontation search model is constructed. Secondly, the multiagent state space, action space, observation space, and reward function are designed for the AUV swarm confrontation search problem, and the MADDPG algorithm is adopted to obtain the AUV swarm confrontation search method. Finally, the effectiveness and the generality of the proposed AUV swarm confrontation search method are verified by simulation experiments for the AUV swarm confrontation search tasks under different speed conditions and sonar detection distances.
Author Bai, Miao
An, Ruiqi
Guo, Zhaozhi
Li, Le
Zuo, Ri
Zhang, Pu
Author_xml – sequence: 1
  givenname: Ruiqi
  surname: An
  fullname: An, Ruiqi
  email: arq@mail.nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University,Xi'an,China
– sequence: 2
  givenname: Le
  surname: Li
  fullname: Li, Le
  email: leli@nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University,Xi'an,China
– sequence: 3
  givenname: Miao
  surname: Bai
  fullname: Bai, Miao
  email: 1959289732@qq.com
  organization: National Elite Institute of Engineering, Northwestern Polytechnical University,Xi'an,China
– sequence: 4
  givenname: Pu
  surname: Zhang
  fullname: Zhang, Pu
  email: 2085208482@qq.com
  organization: National Elite Institute of Engineering, Northwestern Polytechnical University,Xi'an,China
– sequence: 5
  givenname: Zhaozhi
  surname: Guo
  fullname: Guo, Zhaozhi
  email: rangergzz@163.com
  organization: School of Marine Science and Technology, Northwestern Polytechnical University,Xi'an,China
– sequence: 6
  givenname: Ri
  surname: Zuo
  fullname: Zuo, Ri
  email: zuori@mail.nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University,Xi'an,China
BookMark eNo1j11LwzAYRqMouM39A8H8gc43Td58XNZUp7ChsOntyNrUVtZG0oD47x1-XD0P5-LAmZKzIQyekGsGC8bA3FhbWolCiUUOOf4w0EKekLlRRnPOkAFKPCUTZoTOjBDqgkzH8R1ASg4wIbZ4eaWbTxd7asPQxDAkl7ow0I13sWrp2qc21PTWjb6mR5xaT9dFWT4vaXF4C7FLbX9Jzht3GP38b2dke3-3tQ_Z6mn5aItV1hmeMo1sXwFXTjaGmxor4wTH3KNpmJZNpbxCVuXopKqhEcZJ0D4_XsUE7o81M3L1q-2897uP2PUufu3-m_k3879LaQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCDC65474.2025.11090846
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331510565
EISSN 1948-9447
EndPage 1420
ExternalDocumentID 11090846
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 61903304
  funderid: 10.13039/501100001809
– fundername: 111 Project
  grantid: B18041
  funderid: 10.13039/501100013314
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3102020HHZY030010
  funderid: 10.13039/501100012226
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-851bc037a6f939d5c9a4352e59f186fc7e751c25a67d0f49a608e2d0f7145b983
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-851bc037a6f939d5c9a4352e59f186fc7e751c25a67d0f49a608e2d0f7145b983
PageCount 6
ParticipantIDs ieee_primary_11090846
PublicationCentury 2000
PublicationDate 2025-May-16
PublicationDateYYYYMMDD 2025-05-16
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-16
  day: 16
PublicationDecade 2020
PublicationTitle Chinese Control and Decision Conference
PublicationTitleAbbrev CCDC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0066300
Score 1.9091887
Snippet In this paper, an Autonomous Underwater Vehicle (AUV) swarm confrontation search method based on the Multi-Agent Deep Deterministic Policy Gradient (MADDPG)...
SourceID ieee
SourceType Publisher
StartPage 1415
SubjectTerms Autonomous underwater vehicles
AUV swarm
confrontation search
Decision making
multi-agent deep deterministic policy gradient algorithm
Search problems
Sonar detection
Title AUV Swarm Confrontation Search Method Based on the MADDPG Algorithm
URI https://ieeexplore.ieee.org/document/11090846
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4I8aAXXxjf6cHrwj762B5x8XEQQiISbqTdziqJgFkX_fu2BXwcPHhrmjZNppnO13a-bwAuQyG5Lpx_K3s3oUUeBgppETCtrXtxSZnX2R7ei14vHY1kf0VW91wYRPTJZ9h0Tf-Xb-b5wj2VtZw6ZmgDZg1qQoglWWt97HKnHbVK4LLDWlnWyVxhXfduErPmeuqvIio-htzs_HP1XWh8s_FI_yvO7MEGzvZh-4eQ4AFk7cchefhQ5ZS4SU6UwFucLLOJSdfXiSZXNmQZYrst6iPddqfTvyXtl6d5Oamepw0Y3FwPsrtgVR4hmMikCixU0nmYCMULmUjDcqks9ImRySJKHYMHBYvymCkuTFhQqXiYYmybIqJMyzQ5hPpsPsMjIJRiLJQFComFI6nm2jBpNAotjEiYocfQcOYYvy4FMMZrS5z80X8KW87o7pM94mdQr8oFnsNm_l5N3soLv22frsWWDw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omqgXXxjf9uB1YR99bI-4iBiBkIiEG2m3XSQRMOuif9-2gI-DB29N06bJNNP52s73DcC1zziVmfVvYe4mOEt9T2iceURK416UY-J0tvst1unEgwHvLsnqjgujtXbJZ7pim-4vX83SuX0qq1p1TN8EzHXYIBiHwYKutTp4qVWPWqZwmYHVJKkntrSufTkJSWU1-VcZFRdFGrv_XH8Pyt98PNT9ijT7sKanB7DzQ0rwEJLaUx89foh8guwkK0vgbI4W-cSo7SpFoxsTtBQy3Qb3oXatXu_eodrLaJaPi-dJGXqN217S9JYFErwxjwrPgCWZ-hETNOMRVyTlwoCfUBOeBbHl8GhGgjQkgjLlZ5gL6sc6NE0WYCJ5HB1BaTqb6mNAGOuQCQMVIgNIYkmlIlxJzSRTLCIKn0DZmmP4upDAGK4scfpH_xVsNXvt1rB133k4g227AfbLPaDnUCryub6AzfS9GL_ll24LPwGw3plW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=AUV+Swarm+Confrontation+Search+Method+Based+on+the+MADDPG+Algorithm&rft.au=An%2C+Ruiqi&rft.au=Li%2C+Le&rft.au=Bai%2C+Miao&rft.au=Zhang%2C+Pu&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=1415&rft.epage=1420&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090846&rft.externalDocID=11090846