AUV Swarm Confrontation Search Method Based on the MADDPG Algorithm
In this paper, an Autonomous Underwater Vehicle (AUV) swarm confrontation search method based on the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm is proposed for the AUV swarm confrontation search problem. Firstly, the AUV swarm confrontation search model is constructed. Secondl...
Uloženo v:
| Vydáno v: | Chinese Control and Decision Conference s. 1415 - 1420 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
16.05.2025
|
| Témata: | |
| ISSN: | 1948-9447 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, an Autonomous Underwater Vehicle (AUV) swarm confrontation search method based on the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm is proposed for the AUV swarm confrontation search problem. Firstly, the AUV swarm confrontation search model is constructed. Secondly, the multiagent state space, action space, observation space, and reward function are designed for the AUV swarm confrontation search problem, and the MADDPG algorithm is adopted to obtain the AUV swarm confrontation search method. Finally, the effectiveness and the generality of the proposed AUV swarm confrontation search method are verified by simulation experiments for the AUV swarm confrontation search tasks under different speed conditions and sonar detection distances. |
|---|---|
| AbstractList | In this paper, an Autonomous Underwater Vehicle (AUV) swarm confrontation search method based on the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm is proposed for the AUV swarm confrontation search problem. Firstly, the AUV swarm confrontation search model is constructed. Secondly, the multiagent state space, action space, observation space, and reward function are designed for the AUV swarm confrontation search problem, and the MADDPG algorithm is adopted to obtain the AUV swarm confrontation search method. Finally, the effectiveness and the generality of the proposed AUV swarm confrontation search method are verified by simulation experiments for the AUV swarm confrontation search tasks under different speed conditions and sonar detection distances. |
| Author | Bai, Miao An, Ruiqi Guo, Zhaozhi Li, Le Zuo, Ri Zhang, Pu |
| Author_xml | – sequence: 1 givenname: Ruiqi surname: An fullname: An, Ruiqi email: arq@mail.nwpu.edu.cn organization: School of Marine Science and Technology, Northwestern Polytechnical University,Xi'an,China – sequence: 2 givenname: Le surname: Li fullname: Li, Le email: leli@nwpu.edu.cn organization: School of Marine Science and Technology, Northwestern Polytechnical University,Xi'an,China – sequence: 3 givenname: Miao surname: Bai fullname: Bai, Miao email: 1959289732@qq.com organization: National Elite Institute of Engineering, Northwestern Polytechnical University,Xi'an,China – sequence: 4 givenname: Pu surname: Zhang fullname: Zhang, Pu email: 2085208482@qq.com organization: National Elite Institute of Engineering, Northwestern Polytechnical University,Xi'an,China – sequence: 5 givenname: Zhaozhi surname: Guo fullname: Guo, Zhaozhi email: rangergzz@163.com organization: School of Marine Science and Technology, Northwestern Polytechnical University,Xi'an,China – sequence: 6 givenname: Ri surname: Zuo fullname: Zuo, Ri email: zuori@mail.nwpu.edu.cn organization: School of Marine Science and Technology, Northwestern Polytechnical University,Xi'an,China |
| BookMark | eNo1j11LwzAYRqMouM39A8H8gc43Td58XNZUp7ChsOntyNrUVtZG0oD47x1-XD0P5-LAmZKzIQyekGsGC8bA3FhbWolCiUUOOf4w0EKekLlRRnPOkAFKPCUTZoTOjBDqgkzH8R1ASg4wIbZ4eaWbTxd7asPQxDAkl7ow0I13sWrp2qc21PTWjb6mR5xaT9dFWT4vaXF4C7FLbX9Jzht3GP38b2dke3-3tQ_Z6mn5aItV1hmeMo1sXwFXTjaGmxor4wTH3KNpmJZNpbxCVuXopKqhEcZJ0D4_XsUE7o81M3L1q-2897uP2PUufu3-m_k3879LaQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CCDC65474.2025.11090846 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331510565 |
| EISSN | 1948-9447 |
| EndPage | 1420 |
| ExternalDocumentID | 11090846 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation of China grantid: 61903304 funderid: 10.13039/501100001809 – fundername: 111 Project grantid: B18041 funderid: 10.13039/501100013314 – fundername: Fundamental Research Funds for the Central Universities grantid: 3102020HHZY030010 funderid: 10.13039/501100012226 |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-851bc037a6f939d5c9a4352e59f186fc7e751c25a67d0f49a608e2d0f7145b983 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:00:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-851bc037a6f939d5c9a4352e59f186fc7e751c25a67d0f49a608e2d0f7145b983 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_11090846 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-May-16 |
| PublicationDateYYYYMMDD | 2025-05-16 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Control and Decision Conference |
| PublicationTitleAbbrev | CCDC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0066300 |
| Score | 1.9091887 |
| Snippet | In this paper, an Autonomous Underwater Vehicle (AUV) swarm confrontation search method based on the Multi-Agent Deep Deterministic Policy Gradient (MADDPG)... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1415 |
| SubjectTerms | Autonomous underwater vehicles AUV swarm confrontation search Decision making multi-agent deep deterministic policy gradient algorithm Search problems Sonar detection |
| Title | AUV Swarm Confrontation Search Method Based on the MADDPG Algorithm |
| URI | https://ieeexplore.ieee.org/document/11090846 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4I8aAXXxjf6cHrwj762B5x8XEQQiISbqTdziqJgFkX_fu2BXwcPHhrmjZNppnO13a-bwAuQyG5Lpx_K3s3oUUeBgppETCtrXtxSZnX2R7ei14vHY1kf0VW91wYRPTJZ9h0Tf-Xb-b5wj2VtZw6ZmgDZg1qQoglWWt97HKnHbVK4LLDWlnWyVxhXfduErPmeuqvIio-htzs_HP1XWh8s_FI_yvO7MEGzvZh-4eQ4AFk7cchefhQ5ZS4SU6UwFucLLOJSdfXiSZXNmQZYrst6iPddqfTvyXtl6d5Oamepw0Y3FwPsrtgVR4hmMikCixU0nmYCMULmUjDcqks9ImRySJKHYMHBYvymCkuTFhQqXiYYmybIqJMyzQ5hPpsPsMjIJRiLJQFComFI6nm2jBpNAotjEiYocfQcOYYvy4FMMZrS5z80X8KW87o7pM94mdQr8oFnsNm_l5N3soLv22frsWWDw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4omqgXXxjf9uB1YR99bI-4iBiBkIiEG2m3XSQRMOuif9-2gI-DB29N06bJNNP52s73DcC1zziVmfVvYe4mOEt9T2iceURK416UY-J0tvst1unEgwHvLsnqjgujtXbJZ7pim-4vX83SuX0qq1p1TN8EzHXYIBiHwYKutTp4qVWPWqZwmYHVJKkntrSufTkJSWU1-VcZFRdFGrv_XH8Pyt98PNT9ijT7sKanB7DzQ0rwEJLaUx89foh8guwkK0vgbI4W-cSo7SpFoxsTtBQy3Qb3oXatXu_eodrLaJaPi-dJGXqN217S9JYFErwxjwrPgCWZ-hETNOMRVyTlwoCfUBOeBbHl8GhGgjQkgjLlZ5gL6sc6NE0WYCJ5HB1BaTqb6mNAGOuQCQMVIgNIYkmlIlxJzSRTLCIKn0DZmmP4upDAGK4scfpH_xVsNXvt1rB133k4g227AfbLPaDnUCryub6AzfS9GL_ll24LPwGw3plW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=AUV+Swarm+Confrontation+Search+Method+Based+on+the+MADDPG+Algorithm&rft.au=An%2C+Ruiqi&rft.au=Li%2C+Le&rft.au=Bai%2C+Miao&rft.au=Zhang%2C+Pu&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=1415&rft.epage=1420&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090846&rft.externalDocID=11090846 |