Fuzzy C-Regression Clustering Algorithm Based 7-Dof Redundant Manipulators Inverse Dynamics Control
High-precision tracking control of redundant manipulators is essential in robotic applications, but it often requires an exact dynamic model. However, the complex mechanical structure of these manipulators makes it challenging to apply traditional model-based control methods effectively. To address...
Uloženo v:
| Vydáno v: | Chinese Control and Decision Conference s. 319 - 324 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
16.05.2025
|
| Témata: | |
| ISSN: | 1948-9447 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | High-precision tracking control of redundant manipulators is essential in robotic applications, but it often requires an exact dynamic model. However, the complex mechanical structure of these manipulators makes it challenging to apply traditional model-based control methods effectively. To address this challenge, we propose a data-driven approach using the interval type-2 (IT2) fuzzy c-regression clustering (FCRM) algorithm to develop an inverse dynamics model for redundant manipulators. Utilizing the FCRM algorithm, the nonlinear inverse dynamics input-output data of the robotic arm is subjected to hyper-planeshaped (HPS) clustering, which results in the generation of a T-S submodel and its associated membership function (MF). With the aid of the IT2 fuzzy set, the T-S model captures unmodeled dynamics and uncertainty information of redundant manipulators. Offline data is utilized to learn the inverse dynamics TS submodel and its membership function, enabling real-time control of the manipulator input based on predicted control torque derived from the target trajectory. Simulation results on the Franka Emika Panda (7-DOF redundant manipulator) validate the feasibility of the proposed method. |
|---|---|
| AbstractList | High-precision tracking control of redundant manipulators is essential in robotic applications, but it often requires an exact dynamic model. However, the complex mechanical structure of these manipulators makes it challenging to apply traditional model-based control methods effectively. To address this challenge, we propose a data-driven approach using the interval type-2 (IT2) fuzzy c-regression clustering (FCRM) algorithm to develop an inverse dynamics model for redundant manipulators. Utilizing the FCRM algorithm, the nonlinear inverse dynamics input-output data of the robotic arm is subjected to hyper-planeshaped (HPS) clustering, which results in the generation of a T-S submodel and its associated membership function (MF). With the aid of the IT2 fuzzy set, the T-S model captures unmodeled dynamics and uncertainty information of redundant manipulators. Offline data is utilized to learn the inverse dynamics TS submodel and its membership function, enabling real-time control of the manipulator input based on predicted control torque derived from the target trajectory. Simulation results on the Franka Emika Panda (7-DOF redundant manipulator) validate the feasibility of the proposed method. |
| Author | Zhao, Jiayu Pan, Jianhui Yang, Hainan Zhao, Tao |
| Author_xml | – sequence: 1 givenname: Jiayu surname: Zhao fullname: Zhao, Jiayu email: 806988027@qq.com organization: College of Electrical Engineering, Sichuan University,Chengdu,China – sequence: 2 givenname: Tao surname: Zhao fullname: Zhao, Tao email: zhaotaozhaogang@scu.edu.cn organization: College of Electrical Engineering, Sichuan University,Chengdu,China – sequence: 3 givenname: Hainan surname: Yang fullname: Yang, Hainan email: yang12261204@163.com organization: College of Electrical Engineering, Sichuan University,Chengdu,China – sequence: 4 givenname: Jianhui surname: Pan fullname: Pan, Jianhui email: panjianhui1@126.com organization: College of Electrical Engineering, Sichuan University,Chengdu,China |
| BookMark | eNo1kF1LwzAYRqMouM39A8H8gc43TZM0lzNzOpgIY_cjbd_MSJeOpBW2X6_4cXMeOBfPxRmTq9AFJOSewYwx0A_GLIwUhSpmOeTixwEr4YJMtdIl50wwEFJckhHTRZnpolA3ZJzSB4CUHGBE6uVwPp-oyTa4j5iS7wI17ZB6jD7s6bzdd9H37wf6aBM2VGWLztENNkNobOjpqw3-OLS272Kiq_CJMSFdnII9-DpR04U-du0tuXa2TTj92wnZLp-25iVbvz2vzHydec37TCnBUHHlKskdqNLW3yJXNYCuvonInC2dqpwG3TRN7lQtoJZSVbpqtGZ8Qu5-bz0i7o7RH2w87f6b8C8HR1lq |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CCDC65474.2025.11090180 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331510565 |
| EISSN | 1948-9447 |
| EndPage | 324 |
| ExternalDocumentID | 11090180 |
| Genre | orig-research |
| GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-7751e737fb63f078ac75127c009b7c0ee1fa8f7bf909ddd2f7c50c667b9bd9913 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:00:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-7751e737fb63f078ac75127c009b7c0ee1fa8f7bf909ddd2f7c50c667b9bd9913 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_11090180 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-May-16 |
| PublicationDateYYYYMMDD | 2025-05-16 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Chinese Control and Decision Conference |
| PublicationTitleAbbrev | CCDC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0066300 |
| Score | 1.9082143 |
| Snippet | High-precision tracking control of redundant manipulators is essential in robotic applications, but it often requires an exact dynamic model. However, the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 319 |
| SubjectTerms | Clustering algorithms Fuzzy C-regression model Fuzzy sets Heuristic algorithms hyper-plane-shaped clustering interval type-2 T-S fuzzy sets inverse dynamics control Manipulator dynamics Real-time systems redundant manipulators Robustness Simulation Torque Trajectory Uncertainty |
| Title | Fuzzy C-Regression Clustering Algorithm Based 7-Dof Redundant Manipulators Inverse Dynamics Control |
| URI | https://ieeexplore.ieee.org/document/11090180 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagYoCFq4hbHljTNqeTEVIqFqqq6tCt8vFcIpUE5UCivx4_p-UYGFgsy3Zk6TnJe7bf932E3EkhYi2T2JHmZXIC5XNHuJyZPQ9jIONAA-NWbIKNx_F8nkw2YHWLhQEAm3wGPazau3xVyAaPyvrIjomEU7tkl7GoBWttf7sRckdtErjMsH6aDlMU1sVzEy_sbR_9JaJifcjo8J-zH5HuNxqPTr78zDHZgfyEHPwgEjwlctSs1x80daawbBNbc5quGiRBMP30frUsyqx-eaUPxmkpypxhoekUEEFmLEufeZ5ZHa-irCgyb5QV0GGrVV_RtM1m75LZ6HGWPjkb-QQnS_zahM2hC8xnWkS-NoEAl6bBY9IEVcKUAK7msWZCJ4NEKeVpJsOBjCImEqFM1OifkU5e5HBOKKp4mn2FMh-wiwRjHAZCyVB5gQwCruIL0kVzLd5agozF1lKXf7RfkX1cFLyEd6Nr0qnLBm7Innyvs6q8tcv6CeIMpLQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIAEXtiJ2fOCaNruTI6RURbRVVfXQW-Vl3EYqCcqCRL8eO2lZDhy4WJbtyNI4yYztee8hdM8ZCyQPA4Orl8lwhUMNZlGi9jyEAA9cCYRWYhNkOAym03C0BqtXWBgAqJLPoKWr1V2-SHmpj8ramh1TE05tox3PdW2zhmttfry-Zo9ap3Cpge0o6kRaWlefnNhea_PwLxmVyot0D_85_xFqfuPx8OjL0xyjLUhO0MEPKsFTxLvlavWBI2MM8zq1NcHRstQ0CKofPyznaRYXi1f8qNyWwMTopBKPQWPIlG3xgCZxpeSVZjnW3BtZDrhTq9XnOKrz2Zto0n2aRD1jLaBgxKFTqMDZs4A4RDLfkSoUoFw12ISrsIqpEsCSNJCEydAMhRC2JNwzue8TFjKh4kbnDDWSNIFzhLWOp9pZCPUJW5pijILJBPeE7XLXpSK4QE1trtlbTZEx21jq8o_2O7TXmwz6s_7z8OUK7esF0lfyln-NGkVWwg3a5e9FnGe31RJ_AqF0p_s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Fuzzy+C-Regression+Clustering+Algorithm+Based+7-Dof+Redundant+Manipulators+Inverse+Dynamics+Control&rft.au=Zhao%2C+Jiayu&rft.au=Zhao%2C+Tao&rft.au=Yang%2C+Hainan&rft.au=Pan%2C+Jianhui&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=319&rft.epage=324&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090180&rft.externalDocID=11090180 |