Hybrid Deep Learning Framework for Road Surface Classification: Integrating Autoencoder-Based Denoising and CNN-Based Classification

This study uses a hybrid deep learning technique to classify asphalt, pavement, and unpaved roads. In real-world circumstances, image data noise can damage image categorization algorithms. This issue can be addressed by a deep neural network (DNN)-based classification system that uses advanced denoi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2025 International Conference on Intelligent Control, Computing and Communications (IC3) s. 487 - 492
Hlavní autori: Kumar, Ajay, Tiwari, Raj Gaurang, Trivedi, Naresh Kumar
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 13.02.2025
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study uses a hybrid deep learning technique to classify asphalt, pavement, and unpaved roads. In real-world circumstances, image data noise can damage image categorization algorithms. This issue can be addressed by a deep neural network (DNN)-based classification system that uses advanced denoising algorithms to improve input images before categorization. We start by denoising noisy native images with autoencoder (AE) approaches. We use two autoencoders: Denoising Autoencoder(DAE) and Convolutional Denoising Autoencoder(CDAE). Proper categorization requires models that filter noise and increase visual clarity. The CDAE employs convolutional layers to maintain spatial hierarchies and local characteristics during denoising, whereas the DAE involves encoding and decoding to rebuild images. The rebuilt images are classified using a CNN after denoising. The CNN is a preferred DNN architecture for this job since it can gather and represent complex visual input. CNN identifies classification-boosting features using noise-free image training. Experiments show this hybrid model works. With 97.92% classification accuracy, the CDAE-CNN architecture could recognize road surface types and conditions under noisy environments. This performance proves the hybrid approach's durability despite training on noise-corrupted images. It improves image classification in noisy data. Denoising algorithms improve deep learning classifier accuracy and make them more relevant in real-world applications with low image quality. These hybrid DAE-CNN/CDAE-CNN models minimize noise and properly categorize road surfaces.
AbstractList This study uses a hybrid deep learning technique to classify asphalt, pavement, and unpaved roads. In real-world circumstances, image data noise can damage image categorization algorithms. This issue can be addressed by a deep neural network (DNN)-based classification system that uses advanced denoising algorithms to improve input images before categorization. We start by denoising noisy native images with autoencoder (AE) approaches. We use two autoencoders: Denoising Autoencoder(DAE) and Convolutional Denoising Autoencoder(CDAE). Proper categorization requires models that filter noise and increase visual clarity. The CDAE employs convolutional layers to maintain spatial hierarchies and local characteristics during denoising, whereas the DAE involves encoding and decoding to rebuild images. The rebuilt images are classified using a CNN after denoising. The CNN is a preferred DNN architecture for this job since it can gather and represent complex visual input. CNN identifies classification-boosting features using noise-free image training. Experiments show this hybrid model works. With 97.92% classification accuracy, the CDAE-CNN architecture could recognize road surface types and conditions under noisy environments. This performance proves the hybrid approach's durability despite training on noise-corrupted images. It improves image classification in noisy data. Denoising algorithms improve deep learning classifier accuracy and make them more relevant in real-world applications with low image quality. These hybrid DAE-CNN/CDAE-CNN models minimize noise and properly categorize road surfaces.
Author Kumar, Ajay
Tiwari, Raj Gaurang
Trivedi, Naresh Kumar
Author_xml – sequence: 1
  givenname: Ajay
  surname: Kumar
  fullname: Kumar, Ajay
  email: akumar@chitkara.edu.in
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University,Punjab,India
– sequence: 2
  givenname: Raj Gaurang
  surname: Tiwari
  fullname: Tiwari, Raj Gaurang
  email: rajgaurang@chitkara.edu.in
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University,Punjab,India
– sequence: 3
  givenname: Naresh Kumar
  surname: Trivedi
  fullname: Trivedi, Naresh Kumar
  email: nareshk.trivedi@chitkara.edu.in
  organization: Chitkara University Institute of Engineering and Technology, Chitkara University,Punjab,India
BookMark eNpVkLFOwzAYhI0EA5S-AUJ-gQQ7tuOYrQRKK1VFgu7Vn_h3ZdHalZMKdefBSUUZmE53p_uGuyGXIQYk5J6znHNmHua1KIVgVV6wQuVDonRh2AUZG20qIbgqtDTqmnzPjk3ylj4j7ukCIQUfNnSaYIdfMX1SFxN9j2DpxyE5aJHWW-g673wLvY_hkc5Dj5s0mGE2OfQRQxstpuwJOjxhQ_TdqYNgab1cnvP_lFty5WDb4fisI7KavqzqWbZ4e53Xk0XmjegzrbljTeOkQF6asgGrRaXKVnIprVKMCa2gsIK14LR0TDWCcWdsKVlVGd2KEbn7xXpEXO-T30E6rv--ET8D8F81
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IC363308.2025.10957290
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331527495
EndPage 492
ExternalDocumentID 10957290
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-771f0bbf43e1696bad73856c4144d5500375a2d30caf74f05b301f9d6408897c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:04:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-771f0bbf43e1696bad73856c4144d5500375a2d30caf74f05b301f9d6408897c3
PageCount 6
ParticipantIDs ieee_primary_10957290
PublicationCentury 2000
PublicationDate 2025-Feb.-13
PublicationDateYYYYMMDD 2025-02-13
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb.-13
  day: 13
PublicationDecade 2020
PublicationTitle 2025 International Conference on Intelligent Control, Computing and Communications (IC3)
PublicationTitleAbbrev IC3
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9063854
Snippet This study uses a hybrid deep learning technique to classify asphalt, pavement, and unpaved roads. In real-world circumstances, image data noise can damage...
SourceID ieee
SourceType Publisher
StartPage 487
SubjectTerms Accuracy
Autoencoders
Classification algorithms
Computer architecture
Convolutional Denoising Autoencoder
Convolutional neural networks
Deep learning
Deep Neural Networks
Denoising Autoencoder
Hybrid Deep Learning
Image Reconstruction
Noise
Noise measurement
Noise reduction
Noise Reduction Techniques
Noisy Image Classification
Road Surface Classification
Roads
Title Hybrid Deep Learning Framework for Road Surface Classification: Integrating Autoencoder-Based Denoising and CNN-Based Classification
URI https://ieeexplore.ieee.org/document/10957290
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBHf8sCaktSOg9mgULVLVEGHbpU_UZekCgkSOz-cOycFdWBgi5zkEp1l3T37vTtCbuDnVKIkwBKuwm6VjrRhPJKaCaW15FnaNpvI8vxusZCzTqwetDDOuUA-cwO8DGf5tjQNbpXBCpcpJIOA0HezTLRirU71C7dupyMmAJ4jYWuYDjYPb7VNCVFjfPDP7x2S_q_-js5-IssR2XHFMfmafKK6ij45t6ZdWdQ3Ot6Qqyhkn_SlVJa-NpVXYCH0u0QmUHD-PZ12lSHwtYemLrGEpXVV9AiBDM0W5Qo3DqgqLB3leTe-baVP5uPn-WgSdT0UopVkNeTOiY-19py5REihlcXqNcJwwFEWwAl2wFVDy2KjfMZ9nGpY8F5awZH-lBl2QnpFWbhTQp1i3hrnUWrLVexV4oepsU6kgDiYj89IHz24XLdVMpYb553_MX5B9nGekAGdsEvSq6vGXZE981Gv3qvrMLffKByofQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQQYIJEEV844E1JamdBLNBoWpFiSro0K3yJ-qSVCFBYueHc-emoA4MbJGTXKKzrLtn37tHyBX8nIykAFjCpd-tUoHSjAdCsUQqJXgaL8Um0iy7mU7FuCGrey6MtdYXn9kOXvqzfFPoGrfKYIWLGJJBQOibKJ0VL-laDe8Xbl4PeywBgI4lW924s3p8TTjFx43-7j-_uEfavww8Ov6JLftkw-YH5Gvwifwq-mDtgjaNUd9of1VeRSH_pC-FNPS1Lp0EC17xEmuBvPtv6bDpDYGv3dVVgU0sjS2DewhlaDYv5rh1QGVuaC_LmvF1K20y6T9OeoOgUVEI5oJVkD1HLlTKcWajRCRKGuxfk2gOSMoAPEENXNk1LNTSpdyFsYIl74RJOBZApZodklZe5PaIUCuZM9o6JNtyGToZuW6sjU1iwBzMhcekjR6cLZZ9MmYr5538MX5JtgeT59FsNMyeTskOzhnWQ0fsjLSqsrbnZEt_VPP38sLP8zceAqvI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Conference+on+Intelligent+Control%2C+Computing+and+Communications+%28IC3%29&rft.atitle=Hybrid+Deep+Learning+Framework+for+Road+Surface+Classification%3A+Integrating+Autoencoder-Based+Denoising+and+CNN-Based+Classification&rft.au=Kumar%2C+Ajay&rft.au=Tiwari%2C+Raj+Gaurang&rft.au=Trivedi%2C+Naresh+Kumar&rft.date=2025-02-13&rft.pub=IEEE&rft.spage=487&rft.epage=492&rft_id=info:doi/10.1109%2FIC363308.2025.10957290&rft.externalDocID=10957290