Enhanced EV Spatial Distribution Estimation for Grid Planning using Neural Architecture Search-Guided Physics-Informed Neural Network and Pufferfish Optimization Algorithm

Electric vehicles (EV) play a vital role in modern transportation, and accurately estimating their spatial distribution is essential for effective grid planning. The utility grid management system will optimize energy utilization while balancing network capacity and develop new infrastructure compon...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 7th International Conference on Inventive Material Science and Applications (ICIMA) s. 460 - 466
Hlavní autoři: Ramkumar, M. Siva, Sivaramkrishnan, M., M, Arun, S, Yashashwini, Al Jawad, Osama Jamal Jamil Abed, Chadge, Rajkumar
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 28.05.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Electric vehicles (EV) play a vital role in modern transportation, and accurately estimating their spatial distribution is essential for effective grid planning. The utility grid management system will optimize energy utilization while balancing network capacity and develop new infrastructure components which reduce the electrical grid stress during EV integration increases. However, estimating EV distribution in grid planning is challenging due to unpredictable charging patterns, dynamic mobility behavior, and varying energy demands, which complicate load forecasting and infrastructure optimization. To overcome these drawbacks, this paper proposes a hybrid approach for spatial distribution of EV. The process begins by gathering data from vehicle registration dataset, which is then passed through a pre-processing phase. Regularized Bias-Aware Ensemble Kalman Filter (RBAEKF) is employed to clean and remove the missing value in the input data. The pre-processed output was fed to Neural Architecture Search-Guided Physics-Informed Neural Network (NASPINN) the data enters the classification phase, to enhance the accuracy of classifications. The class 0, class 1 and class 2 of EV distribution is successfully classified by using NASPINN. The weight parameter of NASPINN is optimized using Pufferfish Optimization Algorithm (POA). The NASPINN-POA technique is implemented in MATLAB and evaluated using various performance metrics, including accuracy, precision, recall, F1-score, specificity and Root Mean Squared Error (RMSE). The results show that the NASPINN-POA method outperforms existing approaches, such as Sparrow Search Algorithm-Back Propagation Neural Network (SSA-BPNN), Particle Swarm Optimization (PSO), Eurasian Oystercatcher Optimizer-Quantum Neural Network (EOO-QNN), Bayesian Network (BN) and Long Short-Term Memory (LSTM). The proposed NASPINN-POA method enables an accurate spatial distribution of EV with 98.8% accuracy, 98.4% recall and achieves an MAE of 1.07 to optimize grid planning by minimizing errors.
AbstractList Electric vehicles (EV) play a vital role in modern transportation, and accurately estimating their spatial distribution is essential for effective grid planning. The utility grid management system will optimize energy utilization while balancing network capacity and develop new infrastructure components which reduce the electrical grid stress during EV integration increases. However, estimating EV distribution in grid planning is challenging due to unpredictable charging patterns, dynamic mobility behavior, and varying energy demands, which complicate load forecasting and infrastructure optimization. To overcome these drawbacks, this paper proposes a hybrid approach for spatial distribution of EV. The process begins by gathering data from vehicle registration dataset, which is then passed through a pre-processing phase. Regularized Bias-Aware Ensemble Kalman Filter (RBAEKF) is employed to clean and remove the missing value in the input data. The pre-processed output was fed to Neural Architecture Search-Guided Physics-Informed Neural Network (NASPINN) the data enters the classification phase, to enhance the accuracy of classifications. The class 0, class 1 and class 2 of EV distribution is successfully classified by using NASPINN. The weight parameter of NASPINN is optimized using Pufferfish Optimization Algorithm (POA). The NASPINN-POA technique is implemented in MATLAB and evaluated using various performance metrics, including accuracy, precision, recall, F1-score, specificity and Root Mean Squared Error (RMSE). The results show that the NASPINN-POA method outperforms existing approaches, such as Sparrow Search Algorithm-Back Propagation Neural Network (SSA-BPNN), Particle Swarm Optimization (PSO), Eurasian Oystercatcher Optimizer-Quantum Neural Network (EOO-QNN), Bayesian Network (BN) and Long Short-Term Memory (LSTM). The proposed NASPINN-POA method enables an accurate spatial distribution of EV with 98.8% accuracy, 98.4% recall and achieves an MAE of 1.07 to optimize grid planning by minimizing errors.
Author Chadge, Rajkumar
Al Jawad, Osama Jamal Jamil Abed
Sivaramkrishnan, M.
S, Yashashwini
M, Arun
Ramkumar, M. Siva
Author_xml – sequence: 1
  givenname: M. Siva
  surname: Ramkumar
  fullname: Ramkumar, M. Siva
  email: sivaram0699@gmail.com
  organization: SNS College of Technology,Dept of ECE,India
– sequence: 2
  givenname: M.
  surname: Sivaramkrishnan
  fullname: Sivaramkrishnan, M.
  email: krishbe95@gmail.com
  organization: Karpagam College of Engnieering,Dept of EEE,India
– sequence: 3
  givenname: Arun
  surname: M
  fullname: M, Arun
  email: arunkarthik116@gmail.com
  organization: Saveetha University,Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS),Department of Mechanical Engineering,Chennai,India,602105
– sequence: 4
  givenname: Yashashwini
  surname: S
  fullname: S, Yashashwini
  email: yashaswini.cse@cambridge.edu.in
  organization: Cambridge Institute of Technology,Department of CSE,Bengaluru,India,560086
– sequence: 5
  givenname: Osama Jamal Jamil Abed
  surname: Al Jawad
  fullname: Al Jawad, Osama Jamal Jamil Abed
  email: ojawad@zu.edu.jo
  organization: Zarqa University,Faculty of Economic and Administrative Sciences, BIT,Zarqa,Jordan
– sequence: 6
  givenname: Rajkumar
  surname: Chadge
  fullname: Chadge, Rajkumar
  email: rbchadge@rediffmail.com
  organization: Yeshwantrao Chavan College of Engineering,Nagpur,India
BookMark eNo1UEFOwzAQNBIcoPQHHPyBlDiOk_oYlVAilbZSK66V7awbi9SpHEeofIlP4tJy2d0Z7cxo9wHd2s4CQpjEE0Ji_lzNqvciS6cZmSRxws5kniYpvUFjnvMppYQlhJHsHv2UthFWQY3LD7w5Cm9Ei19M752RgzedxWXvzUH8jbpzeO5MjdetsNbYPR76c13C4IKscKoxHpQfHOANiACj-WDqYL5uTr1RfVTZ4HEIxFWyBP_VuU8sbNgZtAanTd_g1TFkmu9LatHuO2d8c3hEd1q0PYyvfYS2r-V29hYtVvNqViwiw6mP8lTSaU0VZ5JqDhxkTlitGFeKMUEhIVkqtWI0VlxBIlicyjoFLRhIIrWgI_R0sTUAsDu6cL077f5fSH8B3T1xWw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIMA64861.2025.11074243
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331521516
EndPage 466
ExternalDocumentID 11074243
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-74b38d3c95b3f9e9eb715dc59cc55a3e2164bfc530c9ce2a504bd4efa5eb1bfa3
IEDL.DBID RIE
IngestDate Wed Oct 08 06:21:55 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-74b38d3c95b3f9e9eb715dc59cc55a3e2164bfc530c9ce2a504bd4efa5eb1bfa3
PageCount 7
ParticipantIDs ieee_primary_11074243
PublicationCentury 2000
PublicationDate 2025-May-28
PublicationDateYYYYMMDD 2025-05-28
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-28
  day: 28
PublicationDecade 2020
PublicationTitle 2025 7th International Conference on Inventive Material Science and Applications (ICIMA)
PublicationTitleAbbrev ICIMA
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9100263
Snippet Electric vehicles (EV) play a vital role in modern transportation, and accurately estimating their spatial distribution is essential for effective grid...
SourceID ieee
SourceType Publisher
StartPage 460
SubjectTerms Accuracy
Classification algorithms
Distribution functions
Electric Vehicle
Estimation
Graphical models
Kalman filters
Long short term memory
Neural Architecture Search-Guided Physics-Informed Neural Network
Neural networks
Optimization
Planning
Pufferfish Optimization Algorithm and Regularized Bias-Aware Ensemble Kalman Filter
Title Enhanced EV Spatial Distribution Estimation for Grid Planning using Neural Architecture Search-Guided Physics-Informed Neural Network and Pufferfish Optimization Algorithm
URI https://ieeexplore.ieee.org/document/11074243
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVoxcAEiCLe8sDqNk3sJB6rkpZKUDpUVbfKzzYSTVGa8FP8JLaT8BgYyGRZtiM5jq-v7zn3AHAfcqljxjniRDOEfS0QM3YESWYMjhQeJ04bcPEUTafxcklnNVndcWGUUg58prq26GL5cidKe1XWs74K9nHQAq0oCiuyVoPO8WhvMpw8D0Ich9bv80m3af5LOMXZjdHxP994AjrfDDw4-7Itp-BAZWfgI8k2LmAPkwW0WsJm7cAHm_m2Fq2CiflhKy4iNIdROM5TCRtZImgh7mtos3GYboMfAQRYYY7RuEylGdyBQsUeVUwlU1F3mVaIccgy06a0uio63W_gi9l0tjWbEw5e17s8LTbbDpiPkvnwEdViCyilQYEizINYBoISHmiqqOJRn0hBqBCEsED5xq3iWpDAE9RqiBEPc4mVZsRs9lyz4By0s12mLgDkAvsCK49FfY2VFEzTuG9GUpF54ohdgo6d6NVblU5j1czx1R_11-DIfk4bsvfjG9Au8lLdgkPxXqT7_M4tgk-iabsg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIMEJEEXs-MDVbZrYTXysSrqINvRQVb1VXttINEVtwk_xk9hZWA4cyCmyPI7k2J5M5r15ADy2udQB4xxxohnCrhaIGT-CJDMORwqHk1wbcDbyoyiYz-mkJKvnXBilVA4-Uw17m-fy5UZk9ldZ08Yq2MXePjggGLtOQdeq8DkObQ67w3GnjYO2jfxc0qgMfkmn5J6jd_LPZ56C-jcHD06-vMsZ2FPJOfgIk1WesofhDFo1YbN64JOtfVvKVsHQbNmCjQjN5yjsb2MJK2EiaEHuS2jrcRizzo8UAixQx6ifxdIMnsNCxQ4VXCXTUJpEBWYcssT0yayyio53K_hijp11yeeEndflZhunq3UdTHvhtDtApdwCiqmXIh9zL5CeoIR7miqquN8iUhAqBCHMU64JrLgWxHMEtSpixMFcYqUZMcc918y7ALVkk6hLALnArsDKYX5LYyUF0zRomZGUb67AZ1egbid68VYU1FhUc3z9R_sDOBpMx6PFaBg934Bj-2ptAt8NbkEt3WbqDhyK9zTebe_zBfEJgAa-Zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+7th+International+Conference+on+Inventive+Material+Science+and+Applications+%28ICIMA%29&rft.atitle=Enhanced+EV+Spatial+Distribution+Estimation+for+Grid+Planning+using+Neural+Architecture+Search-Guided+Physics-Informed+Neural+Network+and+Pufferfish+Optimization+Algorithm&rft.au=Ramkumar%2C+M.+Siva&rft.au=Sivaramkrishnan%2C+M.&rft.au=M%2C+Arun&rft.au=S%2C+Yashashwini&rft.date=2025-05-28&rft.pub=IEEE&rft.spage=460&rft.epage=466&rft_id=info:doi/10.1109%2FICIMA64861.2025.11074243&rft.externalDocID=11074243