TRACE: A Targeted Recommender for VM Assignment in Cloud Environment

Multi-tenancy in modern cloud service colocates multiple virtual machines (VMs) into physical machines (PMs) to improve resource efficiency. However, co-location introduces interference among VMs, potentially degrading the quality-ofservice (QoS) for users. Previous methods predict QoS degradation a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings / IEEE International Conference on Cluster Computing S. 01 - 11
Hauptverfasser: Dong, Hongji, Cheng, Yunlong, Chan, Tin Ping, Gao, Xiaofeng, Chen, Guihai
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 02.09.2025
Schlagworte:
ISSN:2168-9253
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multi-tenancy in modern cloud service colocates multiple virtual machines (VMs) into physical machines (PMs) to improve resource efficiency. However, co-location introduces interference among VMs, potentially degrading the quality-ofservice (QoS) for users. Previous methods predict QoS degradation and schedule VMs accordingly, but they often overlook important information provided by VM metrics and are hard to integrate with real-world cloud schedulers. Considering the above factors, we present TRACE, a novel QoS-aware, lightweight, and decoupled recommender for VM scheduling. Firstly, TRACE employs a dual-tower feature extraction mechanism that independently extracts metrics from VMs and PMs, thereby reducing the time complexity of the model. Secondly, the dual-tower is enhanced by Deep & Cross Networks to explicitly model cross-feature interactions, and we further incorporate a Set Transformer to process overlooked multi-VM metrics from the PM. Thirdly, TRACE designs a trainable similarity gate and an adaptive mask to filter suboptimal migrations, decoupling it from the scheduler for easy integration. Experimental results on data collected from real-world clusters show that TRACE outperforms state-of-the-art methods in QoS prediction accuracy and ranking quality, achieving at least 6.3 % QoS improvements.
AbstractList Multi-tenancy in modern cloud service colocates multiple virtual machines (VMs) into physical machines (PMs) to improve resource efficiency. However, co-location introduces interference among VMs, potentially degrading the quality-ofservice (QoS) for users. Previous methods predict QoS degradation and schedule VMs accordingly, but they often overlook important information provided by VM metrics and are hard to integrate with real-world cloud schedulers. Considering the above factors, we present TRACE, a novel QoS-aware, lightweight, and decoupled recommender for VM scheduling. Firstly, TRACE employs a dual-tower feature extraction mechanism that independently extracts metrics from VMs and PMs, thereby reducing the time complexity of the model. Secondly, the dual-tower is enhanced by Deep & Cross Networks to explicitly model cross-feature interactions, and we further incorporate a Set Transformer to process overlooked multi-VM metrics from the PM. Thirdly, TRACE designs a trainable similarity gate and an adaptive mask to filter suboptimal migrations, decoupling it from the scheduler for easy integration. Experimental results on data collected from real-world clusters show that TRACE outperforms state-of-the-art methods in QoS prediction accuracy and ranking quality, achieving at least 6.3 % QoS improvements.
Author Cheng, Yunlong
Chan, Tin Ping
Chen, Guihai
Gao, Xiaofeng
Dong, Hongji
Author_xml – sequence: 1
  givenname: Hongji
  surname: Dong
  fullname: Dong, Hongji
  email: harlin671@sjtu.edu.cn
  organization: School of Computer Science, Shanghai Jiao Tong University,Shanghai Key Laboratory of Scalable Computing and Systems,Shanghai,China
– sequence: 2
  givenname: Yunlong
  surname: Cheng
  fullname: Cheng, Yunlong
  email: aweftr@sjtu.edu.cn
  organization: School of Computer Science, Shanghai Jiao Tong University,Shanghai Key Laboratory of Scalable Computing and Systems,Shanghai,China
– sequence: 3
  givenname: Tin Ping
  surname: Chan
  fullname: Chan, Tin Ping
  email: chantp@sjtu.edu.cn
  organization: School of Computer Science, Shanghai Jiao Tong University,Shanghai Key Laboratory of Scalable Computing and Systems,Shanghai,China
– sequence: 4
  givenname: Xiaofeng
  surname: Gao
  fullname: Gao, Xiaofeng
  email: gaoxiaofeng@sjtu.edu.cn
  organization: School of Computer Science, Shanghai Jiao Tong University,Shanghai Key Laboratory of Scalable Computing and Systems,Shanghai,China
– sequence: 5
  givenname: Guihai
  surname: Chen
  fullname: Chen, Guihai
  email: chen-gh@sjtu.edu.cn
  organization: School of Computer Science, Shanghai Jiao Tong University,Shanghai Key Laboratory of Scalable Computing and Systems,Shanghai,China
BookMark eNo1z0tLxDAUBeAoCs6M8w9cBPcdk9w2zXVXan1ARajV7dAmt0NkJpW2Cv57i4_VgQ_OgbNkJ6EPxNilFBspBV7l5ctzXVQJQqw2SqhkZml0rOURW2OKBkAmICSaY7ZQUpsIVQJnbDmOb0JACkIv2E1dZXlxzTNeN8OOJnK8ItsfDhQcDbzrB_76yLNx9Lsw28R94Pm-_3C8CJ9-6H_wnJ12zX6k9V-uWH1b1Pl9VD7dPeRZGXmEKdJWp50A1xKZxLXWxqpLFLWAYC04gygVaRenkjQJhyAs2sZ0ssW5oFpYsYvfWU9E2_fBH5rha_t_Gr4BxYtOUA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CLUSTER59342.2025.11186461
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331530198
EISSN 2168-9253
EndPage 11
ExternalDocumentID 11186461
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U23A20309,62272302,62372296
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i93t-6c67f03dbee85dbcc42f52eb393cc3d89912e6d471e6e0d930c9ca8f1b9e852b3
IEDL.DBID RIE
IngestDate Wed Oct 15 14:21:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-6c67f03dbee85dbcc42f52eb393cc3d89912e6d471e6e0d930c9ca8f1b9e852b3
PageCount 11
ParticipantIDs ieee_primary_11186461
PublicationCentury 2000
PublicationDate 2025-Sept.-2
PublicationDateYYYYMMDD 2025-09-02
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-Sept.-2
  day: 02
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Conference on Cluster Computing
PublicationTitleAbbrev CLUSTER
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0037306
Score 2.3020895
Snippet Multi-tenancy in modern cloud service colocates multiple virtual machines (VMs) into physical machines (PMs) to improve resource efficiency. However,...
SourceID ieee
SourceType Publisher
StartPage 01
SubjectTerms Accuracy
Adaptation models
Cloud computing
Cloud Service
Feature extraction
Logic gates
Measurement
QoS
Quality of service
Recommender
Time complexity
Transformers
Virtual machines
Title TRACE: A Targeted Recommender for VM Assignment in Cloud Environment
URI https://ieeexplore.ieee.org/document/11186461
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmAqjyLe8sCaNvEzZqtCEUOpKgioWxXbF1SJpqi0_H5sN6FiYGCzLJ1k3dm-O_v77hC6MSnXshBJJMqERszFyFFhSx1RQ6XmsSZyY-mhHI3SyUSNa7J64MIAQACfQdcPw1--XZi1fyrruXOZCuaTnV0pxYas1Vy71G1VUVcVTWLVy4Yvzy4g5Ioyz7civNtI_-qjEtzIffufCzhAnS0hD49_XM0h2oHqCLWbjgy4PqDH6C5_6meDW9zHeUB4g8U-v5zPQ8M47AJU_PqInUlmbwEFgGcVzt4Xa4sHW8JbB-X3gzx7iOo-CdFM0VUkjJBlTK0GSLnVxjBScuKSZEWNodYlVAkBYZ0XAgGxVTQ2yhRpmWjlBIimJ6hVLSo4RdgSXQrhJCUpmC-FBWlCmeBFwrhmQM9Qxytl-rGphDFt9HH-x_wF2veqD5gscolaq-UartCe-VrNPpfXwX7f9OqaeA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBT3VR8W3OXjddjev3Xgra0vFbSm6Sm9l89iyYLdSW3-_Sbpr8eDBWwgMhEwmM5N83wwAdzKiIsxY4LE8wB4xMbKXqVx4WOJQUF-gcKPpJByNosmEjyuyuuPCaK0d-Ey37dD95auFXNunso6xy4gRm-zsUkKQv6Fr1RcvNoeVVXVFA5934uT1xYSElGNiGVeItmv5X51UnCPpN_-5hEPQ2lLy4PjH2RyBHV0eg2bdkwFWJnoCHtLnbty7h12YOoy3VtBmmPO5axkHTYgK34bQKKWYORwALEoYvy_WCva2lLcWSPu9NB54VacEr-B45THJwtzHSmgdUSWkJCinyKTJHEuJlUmpAqSZMn5IM-0rjn3JZRblgeBGAAl8ChrlotRnACokcsaMZIgyYoth6SjAhNEsIFQQjc9By27K9GNTC2Na78fFH_O3YH-QDpNp8jh6ugQHVg0OoYWuQGO1XOtrsCe_VsXn8sbp8hsvp52_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Cluster+Computing&rft.atitle=TRACE%3A+A+Targeted+Recommender+for+VM+Assignment+in+Cloud+Environment&rft.au=Dong%2C+Hongji&rft.au=Cheng%2C+Yunlong&rft.au=Chan%2C+Tin+Ping&rft.au=Gao%2C+Xiaofeng&rft.date=2025-09-02&rft.pub=IEEE&rft.eissn=2168-9253&rft.spage=01&rft.epage=11&rft_id=info:doi/10.1109%2FCLUSTER59342.2025.11186461&rft.externalDocID=11186461