White-Box Micro-Adaptive Query Processing

Operator performance in in-memory data management systems (DMS) often suffers from micro-architectural hazards such as cache misses and branch mispredictions. While many operators have alternative implementations that are robust against such hazards, these generally perform worse when no hazards are...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Data engineering s. 2880 - 2893
Hlavní autori: Pearce, Jack, Mohr-Daurat, Hubert, Pirk, Holger
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 19.05.2025
Predmet:
ISSN:2375-026X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Operator performance in in-memory data management systems (DMS) often suffers from micro-architectural hazards such as cache misses and branch mispredictions. While many operators have alternative implementations that are robust against such hazards, these generally perform worse when no hazards are encountered. Unfortunately, hazards are caused by order-dependent data characteristics that query optimizers struggle to capture (e.g., sortedness, clusteredness) making a priori hazard-conscious optimization difficult. Additionally, statically optimized plans fail to adapt when data characteristics vary within a table. To address these problems, we propose a hazardadaptive approach to query execution. Through hardwareassisted runtime profiling of low-level metrics, operators dynamically adapt to "hazardous" data. We propose an architecture for hazard-adaptive operators and integrate our approach into a DMS. We demonstrate that using hazard-adaptive operators provides a \sim \mathbf{2-20} \times speedup across several TPC-H queries.
AbstractList Operator performance in in-memory data management systems (DMS) often suffers from micro-architectural hazards such as cache misses and branch mispredictions. While many operators have alternative implementations that are robust against such hazards, these generally perform worse when no hazards are encountered. Unfortunately, hazards are caused by order-dependent data characteristics that query optimizers struggle to capture (e.g., sortedness, clusteredness) making a priori hazard-conscious optimization difficult. Additionally, statically optimized plans fail to adapt when data characteristics vary within a table. To address these problems, we propose a hazardadaptive approach to query execution. Through hardwareassisted runtime profiling of low-level metrics, operators dynamically adapt to "hazardous" data. We propose an architecture for hazard-adaptive operators and integrate our approach into a DMS. We demonstrate that using hazard-adaptive operators provides a \sim \mathbf{2-20} \times speedup across several TPC-H queries.
Author Mohr-Daurat, Hubert
Pirk, Holger
Pearce, Jack
Author_xml – sequence: 1
  givenname: Jack
  surname: Pearce
  fullname: Pearce, Jack
  email: jack.pearce22@imperial.ac.uk
  organization: Imperial College London
– sequence: 2
  givenname: Hubert
  surname: Mohr-Daurat
  fullname: Mohr-Daurat, Hubert
  email: h.mohr-daurat19@imperial.ac.uk
  organization: Imperial College London
– sequence: 3
  givenname: Holger
  surname: Pirk
  fullname: Pirk, Holger
  email: hlgr@ic.ac.uk
  organization: Imperial College London
BookMark eNotjE1Lw0AUAFdRsK35Bz3k6mHjvn37eayxaqFFhYLeypq81RVNShLF_nsDOpdhLjNlJ03bEGNzEAWA8Jer8npptFKukELqQggJ5ohl3nqHCBqNQH_MJhKt5kKa5zOW9f27GPEKQIsJu3h6SwPxq_Yn36Sqa_miDvshfVP--EXdIX_o2or6PjWv5-w0ho-esn_P2PZmuS3v-Pr-dlUu1jx5HLgJDp2zwVulI1YIFswYMgaorY3kK6miV9KoF2MQXXAkogUb62BkiAJnbP63TUS023fpM3SHHYygBI-__m1DFg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICDE65448.2025.00216
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331536039
EISSN 2375-026X
EndPage 2893
ExternalDocumentID 11113219
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i93t-6a83887a9745f3c31716a972fa1d77fe9c24f94264b66338a8e0f717fda62af03
IEDL.DBID RIE
IngestDate Wed Aug 27 07:41:07 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-6a83887a9745f3c31716a972fa1d77fe9c24f94264b66338a8e0f717fda62af03
PageCount 14
ParticipantIDs ieee_primary_11113219
PublicationCentury 2000
PublicationDate 2025-May-19
PublicationDateYYYYMMDD 2025-05-19
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-19
  day: 19
PublicationDecade 2020
PublicationTitle Data engineering
PublicationTitleAbbrev ICDE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000941150
Score 2.2921035
Snippet Operator performance in in-memory data management systems (DMS) often suffers from micro-architectural hazards such as cache misses and branch mispredictions....
SourceID ieee
SourceType Publisher
StartPage 2880
SubjectTerms Engines
Glass box
Hazards
in-memory database
Measurement
micro-adaptivity
micro-architectural hazards
Microarchitecture
Monitoring
Optimization
Pathology
Query processing
Runtime
white-box optimization
Title White-Box Micro-Adaptive Query Processing
URI https://ieeexplore.ieee.org/document/11113219
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BxcBUHkW8lYGFwTSJEz9GKK1goCpSh26VE5-lLk0VWlT-PT43LSwMbLYHW7Z19vl83_cB3JmsEKUgQRMlOMvQm2IRW0FZ5pKrjDA6JohNyOFQTSZ61IDVAxYGEUPyGT5QMfzl26pcUaismwRddCL53JdSbsBau4CKf6eQd9PA45JYd197z32RZyGDKw2hE1I1_yWiEu6QQfufox9B5weNF41298wx7OH8BNpbOYaosc5TuA9id-ypWkdvlGbHHq1Z0GkWva-w_ooaTIDvowPjQX_ce2GNEgKbab5kwijuDwPjff_c8ZITxY2vpM4kVkqHukwzp8m3KbwDwZVRGDv_TnPWiNS4mJ9Ba17N8RwiLlPMHZHSWE28PDopVSGMN2OV8QLtBXRo5tPFhutiup305R_tV3BIi0v_6Ym-htayXuENHJSfy9lHfRt26BteB452
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0YNNETfmD8dg9ePKzsbku3PSpCIALBhAM30t1OEy5AgDX67-2UBb148NY2TZvuZtrpdN57AA-aZyIXJGgiBQs5OlPMIiMoyzxlkhNGR3uxiXQwkOOxGpZgdY-FQUSffIZPVPRv-WaeFxQqq8deF51IPvcbnCfxBq61C6m4mwr5NyVALo5Uvdt8bQnXlXK4Eh88IV3zXzIq_hRpV_85_zHUfvB4wXB30pzAHs5OoboVZAhK-zyDRy93F77MP4M-JdqFz0YvaD8L3gtcfgUlKsCNUYNRuzVqdsJSCyGcKrYOhZbMbQfaef8Ny3JGJDeuklgdmzS1qPKEW0XeTeZcCCa1xMi6m5o1WiTaRuwcKrP5DC8gYGmCDUu0NEYRM4-Kc5kJ7QxZcpahuYQarXyy2LBdTLaLvvqj_R4OO6N-b9LrDt6u4Yg-NL2ux-oGKutlgbdwkH-sp6vlnf9b3_v4kb0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Data+engineering&rft.atitle=White-Box+Micro-Adaptive+Query+Processing&rft.au=Pearce%2C+Jack&rft.au=Mohr-Daurat%2C+Hubert&rft.au=Pirk%2C+Holger&rft.date=2025-05-19&rft.pub=IEEE&rft.eissn=2375-026X&rft.spage=2880&rft.epage=2893&rft_id=info:doi/10.1109%2FICDE65448.2025.00216&rft.externalDocID=11113219