White-Box Micro-Adaptive Query Processing
Operator performance in in-memory data management systems (DMS) often suffers from micro-architectural hazards such as cache misses and branch mispredictions. While many operators have alternative implementations that are robust against such hazards, these generally perform worse when no hazards are...
Saved in:
| Published in: | Data engineering pp. 2880 - 2893 |
|---|---|
| Main Authors: | , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
19.05.2025
|
| Subjects: | |
| ISSN: | 2375-026X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Operator performance in in-memory data management systems (DMS) often suffers from micro-architectural hazards such as cache misses and branch mispredictions. While many operators have alternative implementations that are robust against such hazards, these generally perform worse when no hazards are encountered. Unfortunately, hazards are caused by order-dependent data characteristics that query optimizers struggle to capture (e.g., sortedness, clusteredness) making a priori hazard-conscious optimization difficult. Additionally, statically optimized plans fail to adapt when data characteristics vary within a table. To address these problems, we propose a hazardadaptive approach to query execution. Through hardwareassisted runtime profiling of low-level metrics, operators dynamically adapt to "hazardous" data. We propose an architecture for hazard-adaptive operators and integrate our approach into a DMS. We demonstrate that using hazard-adaptive operators provides a \sim \mathbf{2-20} \times speedup across several TPC-H queries. |
|---|---|
| AbstractList | Operator performance in in-memory data management systems (DMS) often suffers from micro-architectural hazards such as cache misses and branch mispredictions. While many operators have alternative implementations that are robust against such hazards, these generally perform worse when no hazards are encountered. Unfortunately, hazards are caused by order-dependent data characteristics that query optimizers struggle to capture (e.g., sortedness, clusteredness) making a priori hazard-conscious optimization difficult. Additionally, statically optimized plans fail to adapt when data characteristics vary within a table. To address these problems, we propose a hazardadaptive approach to query execution. Through hardwareassisted runtime profiling of low-level metrics, operators dynamically adapt to "hazardous" data. We propose an architecture for hazard-adaptive operators and integrate our approach into a DMS. We demonstrate that using hazard-adaptive operators provides a \sim \mathbf{2-20} \times speedup across several TPC-H queries. |
| Author | Mohr-Daurat, Hubert Pirk, Holger Pearce, Jack |
| Author_xml | – sequence: 1 givenname: Jack surname: Pearce fullname: Pearce, Jack email: jack.pearce22@imperial.ac.uk organization: Imperial College London – sequence: 2 givenname: Hubert surname: Mohr-Daurat fullname: Mohr-Daurat, Hubert email: h.mohr-daurat19@imperial.ac.uk organization: Imperial College London – sequence: 3 givenname: Holger surname: Pirk fullname: Pirk, Holger email: hlgr@ic.ac.uk organization: Imperial College London |
| BookMark | eNotjE1Lw0AUAFdRsK35Bz3k6mHjvn37eayxaqFFhYLeypq81RVNShLF_nsDOpdhLjNlJ03bEGNzEAWA8Jer8npptFKukELqQggJ5ohl3nqHCBqNQH_MJhKt5kKa5zOW9f27GPEKQIsJu3h6SwPxq_Yn36Sqa_miDvshfVP--EXdIX_o2or6PjWv5-w0ho-esn_P2PZmuS3v-Pr-dlUu1jx5HLgJDp2zwVulI1YIFswYMgaorY3kK6miV9KoF2MQXXAkogUb62BkiAJnbP63TUS023fpM3SHHYygBI-__m1DFg |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICDE65448.2025.00216 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9798331536039 |
| EISSN | 2375-026X |
| EndPage | 2893 |
| ExternalDocumentID | 11113219 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i93t-6a83887a9745f3c31716a972fa1d77fe9c24f94264b66338a8e0f717fda62af03 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 07:41:07 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-6a83887a9745f3c31716a972fa1d77fe9c24f94264b66338a8e0f717fda62af03 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_11113219 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-May-19 |
| PublicationDateYYYYMMDD | 2025-05-19 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationTitle | Data engineering |
| PublicationTitleAbbrev | ICDE |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000941150 |
| Score | 2.2921035 |
| Snippet | Operator performance in in-memory data management systems (DMS) often suffers from micro-architectural hazards such as cache misses and branch mispredictions.... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2880 |
| SubjectTerms | Engines Glass box Hazards in-memory database Measurement micro-adaptivity micro-architectural hazards Microarchitecture Monitoring Optimization Pathology Query processing Runtime white-box optimization |
| Title | White-Box Micro-Adaptive Query Processing |
| URI | https://ieeexplore.ieee.org/document/11113219 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BxcBUPor4VgYWBtM4dmJ7hNIKJKiK1KFb5ThnqUtblRbBv8fnpoWFgc2xrES2Ffv5fO89gBvphEfPJSutTpnMK8UCSihZgSg5V9rmZdSZfVH9vh6NzKAmq0cuDCLG5DO8o2K8y69mbkWhsjaPvugk8rmrlFqTtbYBlXBOIXRT0-N4atrPncdukcuYwZXF0Am5mv8yUYl7SK_5z68fQOuHjZcMtvvMIezg9AiaGzuGpP47j-E2mt2xh9ln8kppduy-snNazZK3FS6-kpoTEN7RgmGvO-w8sdoJgU2MWLLCahEWAxuwf-6FEyRxEx4yb3mllEfjMukNYZsyAAihrcbUh3Oar2yRWZ-KE2hMZ1M8hUQHBCFl6VRGujOhKaauVDZHmaK3zpxBi3o-nq-1LsabTp__UX8B-zS4dJ_OzSU0losVXsGe-1hO3hfXcYa-AWTmj9w |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTgIxFG0MmugKHxjfzsKNi8p02pm2S0UIRCCYsGBHOp3bhA0QHkb_3t4yoBsX7jpNM5O2mfb09p5zCHkQljtwTNDcqJiKtJDUo4ScZgCCMalMmged2a7s99VopAclWT1wYQAgJJ_BExbDXX4xs2sMldVZ8EVHkc_9VIiEbehau5CKP6kgvikJcizW9U7jtZn5ppjDlYTgCfqa_7JRCbtIq_rP7x-T2g8fLxrsdpoTsgfTU1LdGjJE5f95Rh6D3R19mX1GPUy0o8-FmeN6Fr2vYfEVlawA_44aGbaaw0abll4IdKL5imZGcb8cGI_-U8ctR5Eb_5A4wwopHWibCKcR3eQeQnBlFMTOn9RcYbLEuJifk8p0NoULEimPIYTIrUxQecY3hdjm0qQgYnDG6ktSw56P5xu1i_G201d_1N-Tw_aw1x13O_23a3KEA42360zfkMpqsYZbcmA_VpPl4i7M1jcVkJMj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Data+engineering&rft.atitle=White-Box+Micro-Adaptive+Query+Processing&rft.au=Pearce%2C+Jack&rft.au=Mohr-Daurat%2C+Hubert&rft.au=Pirk%2C+Holger&rft.date=2025-05-19&rft.pub=IEEE&rft.eissn=2375-026X&rft.spage=2880&rft.epage=2893&rft_id=info:doi/10.1109%2FICDE65448.2025.00216&rft.externalDocID=11113219 |