Learning RIS Configuration with Quantized Responses: A Neuroevolution-Trained Multi-Branch Attention Convolutional Neural Network
In this paper, we consider the problem of jointly controlling the configuration of a Reconfigurable Intelligent Surface (RIS) with unit elements of quantized responses and a codebook-based transmit precoder in RIS-empowered multiple-input single-output communication systems. The adjustable elements...
Uloženo v:
| Vydáno v: | IEEE International Conference on Communications workshops s. 1894 - 1899 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
08.06.2025
|
| Témata: | |
| ISSN: | 2694-2941 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we consider the problem of jointly controlling the configuration of a Reconfigurable Intelligent Surface (RIS) with unit elements of quantized responses and a codebook-based transmit precoder in RIS-empowered multiple-input single-output communication systems. The adjustable elements of the RIS and the precoding vector need to be jointly updated in real time to account for rapid changes in the wireless channels, making the application of complicated discrete optimization algorithms impractical. We present a novel multi-branch attention convolutional neural network architecture for this design objective which is optimized using neuroevolution, leveraging its capability to effectively tackle the non-differentiable problem arising from the quantized phase states of the RIS elements. The channel matrices of all involved links are first passed to separate self-attention layers to obtain initial embeddings, which are then concatenated and passed to a convolutional network for spatial feature extraction, before being fed to a per-element multi-layered perceptron for the final RIS phase configuration calculation. Our numerical investigattions showcase the superiority of our approach over both learning-based and classical discrete optimization benchmarks. |
|---|---|
| AbstractList | In this paper, we consider the problem of jointly controlling the configuration of a Reconfigurable Intelligent Surface (RIS) with unit elements of quantized responses and a codebook-based transmit precoder in RIS-empowered multiple-input single-output communication systems. The adjustable elements of the RIS and the precoding vector need to be jointly updated in real time to account for rapid changes in the wireless channels, making the application of complicated discrete optimization algorithms impractical. We present a novel multi-branch attention convolutional neural network architecture for this design objective which is optimized using neuroevolution, leveraging its capability to effectively tackle the non-differentiable problem arising from the quantized phase states of the RIS elements. The channel matrices of all involved links are first passed to separate self-attention layers to obtain initial embeddings, which are then concatenated and passed to a convolutional network for spatial feature extraction, before being fed to a per-element multi-layered perceptron for the final RIS phase configuration calculation. Our numerical investigattions showcase the superiority of our approach over both learning-based and classical discrete optimization benchmarks. |
| Author | Stamatelis, George Stylianopoulos, Kyriakos Alexandropoulos, George C. |
| Author_xml | – sequence: 1 givenname: George surname: Stamatelis fullname: Stamatelis, George email: georgestamat@di.uoa.gr organization: National and Kapodistrian University of Athens Panepistimiopolis Ilissia,Department of Informatics and Telecommunications,Athens,Greece,15784 – sequence: 2 givenname: Kyriakos surname: Stylianopoulos fullname: Stylianopoulos, Kyriakos email: kstylianop@di.uoa.gr organization: National and Kapodistrian University of Athens Panepistimiopolis Ilissia,Department of Informatics and Telecommunications,Athens,Greece,15784 – sequence: 3 givenname: George C. surname: Alexandropoulos fullname: Alexandropoulos, George C. email: alexandg@di.uoa.gr organization: National and Kapodistrian University of Athens Panepistimiopolis Ilissia,Department of Informatics and Telecommunications,Athens,Greece,15784 |
| BookMark | eNo1kE1PAjEURavRRET-gYvuXA32azqtO5ygkqBGJHFJykwL1bElbUeiO_-5I8rqLt65J7nvFBw57zQAFxgNMUbyclKWLz68xbXfRF7wgg0JInl3w5wQQQ7AQBZSUIpzyQkTh6BHuGQZkQyfgEGMrwghioUQnPXA91Sr4KxbwdnkGZbeGbtqg0rWO7i1aQ2fWuWS_dI1nOm48S7qeAVH8EG3wesP37S_aDYPyrqOuW-bZLProFy1hqOUtNuZOu8eVc2uu4u07XacgWOjmqgH_9kH85vxvLzLpo-3k3I0zaykKePCLHmlRMWkwIpRZhineV1US7Q01HDcTa6lrohU1DDCayy55iwvDCooMZT2wfmf1mqtF5tg31X4XOyfRn8AAwBpGQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCWorkshops67674.2025.11162282 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331596248 |
| EISSN | 2694-2941 |
| EndPage | 1899 |
| ExternalDocumentID | 11162282 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Horizon Europe funderid: 10.13039/100018693 |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
| ID | FETCH-LOGICAL-i93t-68fb6ca8c4981a434f4635d7cb0bf3f61798d9ec29a3f426d196e6457f0732f33 |
| IEDL.DBID | RIE |
| IngestDate | Wed Oct 01 07:05:14 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-68fb6ca8c4981a434f4635d7cb0bf3f61798d9ec29a3f426d196e6457f0732f33 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_11162282 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-June-8 |
| PublicationDateYYYYMMDD | 2025-06-08 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-8 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE International Conference on Communications workshops |
| PublicationTitleAbbrev | ICC Workshops |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003188864 |
| Score | 1.9112141 |
| Snippet | In this paper, we consider the problem of jointly controlling the configuration of a Reconfigurable Intelligent Surface (RIS) with unit elements of quantized... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1894 |
| SubjectTerms | adaptive decision making attention network Benchmark testing Conferences Convolutional neural networks deep neuroevolution MISO Optimization Performance evaluation Precoding Real-time systems Reconfigurable intelligent surface Reconfigurable intelligent surfaces Vectors |
| Title | Learning RIS Configuration with Quantized Responses: A Neuroevolution-Trained Multi-Branch Attention Convolutional Neural Network |
| URI | https://ieeexplore.ieee.org/document/11162282 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZohRAsvIp4ywMSk9s0dhybrVRUVEJVKR26VYkfbSTUVE3SgY1_ju2kBQYGprxsK7rz5eLPd98BcKfDUMSsHSDzHCMiCUOR4sauYuObPO1prhzP7Es4GLDJhA-rZHWXC6OUcsFnqmlP3V6-TEVhobKWsUvqmzVCDdTCkJbJWltAxUxOxijZA_cVj2ar3-1axDmbp8vM8pJZCMUPmptRftVTce6kd_jPFzkCje_EPDjcupxjsKMWJ-DgB6fgKfisGFNncNR_g7ZfMitKNUMLusLXwggz-VASjsr4WJU9wA50LB1qXc1ENLalI0wbl6CLHm35jTns5HkZHWnH3TSN3l1fd3Ah5Q0w7j2Nu8-oqrOAEo5zRJmOqYiYIJy1I4KJJuYvRBoderHGmlpKM8mV8HmEtXHo0hitoiQItfk8-BrjM1BfpAt1DqAXaeZrqn0RYiIpj83ylwqpA3NpN1wvQMMKc7osmTSmGzle_nH_CuxblbnQLHYN6vmqUDdgV6zzJFvdOv1_ARJXtDQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAFJ4oGpeLG8bdOZh4GijtdDrjDYkEIhJEDtxIOws0MUBoy8Gb_9yZaUE9ePDUdrY0b-nrvHnvewDcqSDgEa35SPd7CAtMUSiZ1qtI2yZHOYpJizPbCbpdOhyyXpGsbnNhpJQ2-ExWzK09yxcznhlXWVXrJXH1HmETbPkYu06errV2qWjxpJTgHXBfIGlW242G8Tknk9k8Mchkxoni-pXVOr8qqliD0jz456scgvJ3ah7srY3OEdiQ02Ow_wNV8AR8FpipY9hvv0EzLx5nOaOhcbvC10yTM_6QAvbzCFmZPMA6tDgdclnIIhqY4hF6jE3RRY-mAMcE1tM0j480666Ghu92rr3YoPIyGDSfBo0WKiotoJh5KSJURYSHlGNGayH2sML6P0RoLjqR8hQxoGaCSe6y0FPapAuttpJgP1D6A-EqzzsFpelsKs8AdEJFXUWUywMPC8IivQEmXChfP5oj13NQNsQczXMsjdGKjhd_tN-C3dbgpTPqtLvPl2DPsM8GatErUEoXmbwG23yZxsnixsrCF5nut3s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Communications+workshops&rft.atitle=Learning+RIS+Configuration+with+Quantized+Responses%3A+A+Neuroevolution-Trained+Multi-Branch+Attention+Convolutional+Neural+Network&rft.au=Stamatelis%2C+George&rft.au=Stylianopoulos%2C+Kyriakos&rft.au=Alexandropoulos%2C+George+C.&rft.date=2025-06-08&rft.pub=IEEE&rft.eissn=2694-2941&rft.spage=1894&rft.epage=1899&rft_id=info:doi/10.1109%2FICCWorkshops67674.2025.11162282&rft.externalDocID=11162282 |