Learning RIS Configuration with Quantized Responses: A Neuroevolution-Trained Multi-Branch Attention Convolutional Neural Network

In this paper, we consider the problem of jointly controlling the configuration of a Reconfigurable Intelligent Surface (RIS) with unit elements of quantized responses and a codebook-based transmit precoder in RIS-empowered multiple-input single-output communication systems. The adjustable elements...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE International Conference on Communications workshops s. 1894 - 1899
Hlavní autoři: Stamatelis, George, Stylianopoulos, Kyriakos, Alexandropoulos, George C.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 08.06.2025
Témata:
ISSN:2694-2941
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, we consider the problem of jointly controlling the configuration of a Reconfigurable Intelligent Surface (RIS) with unit elements of quantized responses and a codebook-based transmit precoder in RIS-empowered multiple-input single-output communication systems. The adjustable elements of the RIS and the precoding vector need to be jointly updated in real time to account for rapid changes in the wireless channels, making the application of complicated discrete optimization algorithms impractical. We present a novel multi-branch attention convolutional neural network architecture for this design objective which is optimized using neuroevolution, leveraging its capability to effectively tackle the non-differentiable problem arising from the quantized phase states of the RIS elements. The channel matrices of all involved links are first passed to separate self-attention layers to obtain initial embeddings, which are then concatenated and passed to a convolutional network for spatial feature extraction, before being fed to a per-element multi-layered perceptron for the final RIS phase configuration calculation. Our numerical investigattions showcase the superiority of our approach over both learning-based and classical discrete optimization benchmarks.
AbstractList In this paper, we consider the problem of jointly controlling the configuration of a Reconfigurable Intelligent Surface (RIS) with unit elements of quantized responses and a codebook-based transmit precoder in RIS-empowered multiple-input single-output communication systems. The adjustable elements of the RIS and the precoding vector need to be jointly updated in real time to account for rapid changes in the wireless channels, making the application of complicated discrete optimization algorithms impractical. We present a novel multi-branch attention convolutional neural network architecture for this design objective which is optimized using neuroevolution, leveraging its capability to effectively tackle the non-differentiable problem arising from the quantized phase states of the RIS elements. The channel matrices of all involved links are first passed to separate self-attention layers to obtain initial embeddings, which are then concatenated and passed to a convolutional network for spatial feature extraction, before being fed to a per-element multi-layered perceptron for the final RIS phase configuration calculation. Our numerical investigattions showcase the superiority of our approach over both learning-based and classical discrete optimization benchmarks.
Author Stamatelis, George
Stylianopoulos, Kyriakos
Alexandropoulos, George C.
Author_xml – sequence: 1
  givenname: George
  surname: Stamatelis
  fullname: Stamatelis, George
  email: georgestamat@di.uoa.gr
  organization: National and Kapodistrian University of Athens Panepistimiopolis Ilissia,Department of Informatics and Telecommunications,Athens,Greece,15784
– sequence: 2
  givenname: Kyriakos
  surname: Stylianopoulos
  fullname: Stylianopoulos, Kyriakos
  email: kstylianop@di.uoa.gr
  organization: National and Kapodistrian University of Athens Panepistimiopolis Ilissia,Department of Informatics and Telecommunications,Athens,Greece,15784
– sequence: 3
  givenname: George C.
  surname: Alexandropoulos
  fullname: Alexandropoulos, George C.
  email: alexandg@di.uoa.gr
  organization: National and Kapodistrian University of Athens Panepistimiopolis Ilissia,Department of Informatics and Telecommunications,Athens,Greece,15784
BookMark eNo1kE1PAjEURavRRET-gYvuXA32azqtO5ygkqBGJHFJykwL1bElbUeiO_-5I8rqLt65J7nvFBw57zQAFxgNMUbyclKWLz68xbXfRF7wgg0JInl3w5wQQQ7AQBZSUIpzyQkTh6BHuGQZkQyfgEGMrwghioUQnPXA91Sr4KxbwdnkGZbeGbtqg0rWO7i1aQ2fWuWS_dI1nOm48S7qeAVH8EG3wesP37S_aDYPyrqOuW-bZLProFy1hqOUtNuZOu8eVc2uu4u07XacgWOjmqgH_9kH85vxvLzLpo-3k3I0zaykKePCLHmlRMWkwIpRZhineV1US7Q01HDcTa6lrohU1DDCayy55iwvDCooMZT2wfmf1mqtF5tg31X4XOyfRn8AAwBpGQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCWorkshops67674.2025.11162282
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331596248
EISSN 2694-2941
EndPage 1899
ExternalDocumentID 11162282
Genre orig-research
GrantInformation_xml – fundername: Horizon Europe
  funderid: 10.13039/100018693
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-68fb6ca8c4981a434f4635d7cb0bf3f61798d9ec29a3f426d196e6457f0732f33
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:14 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-68fb6ca8c4981a434f4635d7cb0bf3f61798d9ec29a3f426d196e6457f0732f33
PageCount 6
ParticipantIDs ieee_primary_11162282
PublicationCentury 2000
PublicationDate 2025-June-8
PublicationDateYYYYMMDD 2025-06-08
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-8
  day: 08
PublicationDecade 2020
PublicationTitle IEEE International Conference on Communications workshops
PublicationTitleAbbrev ICC Workshops
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188864
Score 1.9112141
Snippet In this paper, we consider the problem of jointly controlling the configuration of a Reconfigurable Intelligent Surface (RIS) with unit elements of quantized...
SourceID ieee
SourceType Publisher
StartPage 1894
SubjectTerms adaptive decision making
attention network
Benchmark testing
Conferences
Convolutional neural networks
deep neuroevolution
MISO
Optimization
Performance evaluation
Precoding
Real-time systems
Reconfigurable intelligent surface
Reconfigurable intelligent surfaces
Vectors
Title Learning RIS Configuration with Quantized Responses: A Neuroevolution-Trained Multi-Branch Attention Convolutional Neural Network
URI https://ieeexplore.ieee.org/document/11162282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZohRAsvIp4ywMSk9s0dhybrVRUVEJVKR26VYkfbSTUVE3SgY1_ju2kBQYGprxsK7rz5eLPd98BcKfDUMSsHSDzHCMiCUOR4sauYuObPO1prhzP7Es4GLDJhA-rZHWXC6OUcsFnqmlP3V6-TEVhobKWsUvqmzVCDdTCkJbJWltAxUxOxijZA_cVj2ar3-1axDmbp8vM8pJZCMUPmptRftVTce6kd_jPFzkCje_EPDjcupxjsKMWJ-DgB6fgKfisGFNncNR_g7ZfMitKNUMLusLXwggz-VASjsr4WJU9wA50LB1qXc1ENLalI0wbl6CLHm35jTns5HkZHWnH3TSN3l1fd3Ah5Q0w7j2Nu8-oqrOAEo5zRJmOqYiYIJy1I4KJJuYvRBoderHGmlpKM8mV8HmEtXHo0hitoiQItfk8-BrjM1BfpAt1DqAXaeZrqn0RYiIpj83ylwqpA3NpN1wvQMMKc7osmTSmGzle_nH_CuxblbnQLHYN6vmqUDdgV6zzJFvdOv1_ARJXtDQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAFJ4oGpeLG8bdOZh4GijtdDrjDYkEIhJEDtxIOws0MUBoy8Gb_9yZaUE9ePDUdrY0b-nrvHnvewDcqSDgEa35SPd7CAtMUSiZ1qtI2yZHOYpJizPbCbpdOhyyXpGsbnNhpJQ2-ExWzK09yxcznhlXWVXrJXH1HmETbPkYu06errV2qWjxpJTgHXBfIGlW242G8Tknk9k8Mchkxoni-pXVOr8qqliD0jz456scgvJ3ah7srY3OEdiQ02Ow_wNV8AR8FpipY9hvv0EzLx5nOaOhcbvC10yTM_6QAvbzCFmZPMA6tDgdclnIIhqY4hF6jE3RRY-mAMcE1tM0j480666Ghu92rr3YoPIyGDSfBo0WKiotoJh5KSJURYSHlGNGayH2sML6P0RoLjqR8hQxoGaCSe6y0FPapAuttpJgP1D6A-EqzzsFpelsKs8AdEJFXUWUywMPC8IivQEmXChfP5oj13NQNsQczXMsjdGKjhd_tN-C3dbgpTPqtLvPl2DPsM8GatErUEoXmbwG23yZxsnixsrCF5nut3s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Communications+workshops&rft.atitle=Learning+RIS+Configuration+with+Quantized+Responses%3A+A+Neuroevolution-Trained+Multi-Branch+Attention+Convolutional+Neural+Network&rft.au=Stamatelis%2C+George&rft.au=Stylianopoulos%2C+Kyriakos&rft.au=Alexandropoulos%2C+George+C.&rft.date=2025-06-08&rft.pub=IEEE&rft.eissn=2694-2941&rft.spage=1894&rft.epage=1899&rft_id=info:doi/10.1109%2FICCWorkshops67674.2025.11162282&rft.externalDocID=11162282