Automatic Region-Based Layout Optimization of Substation Wiring Diagrams Via Improved Genetic Algorithms

This paper proposes an automatic region-based layout optimization method for substation main wiring diagrams using a improved genetic algorithm. The method addresses the problems of low space utilization and rigid region division caused by template-based layouts. A two-segment chromosome structure i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2025 8th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE) s. 237 - 241
Hlavní autori: Fan, Qing, Liu, Junyi, Ren, Hao, Qin, Jun, Xu, Xiaofeng, Shen, Zeliang, Peng, Cong
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 09.05.2025
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes an automatic region-based layout optimization method for substation main wiring diagrams using a improved genetic algorithm. The method addresses the problems of low space utilization and rigid region division caused by template-based layouts. A two-segment chromosome structure is designed to encode both region assignment and interval ordering. The algorithm includes repair mechanisms and enhanced crossover and mutation operations to improve search efficiency and solution stability. In the layout modeling phase, interval units are abstracted as rectangular blocks to enable unified spatial representation. A set of graph-structured constraints, including voltage isolation, region boundary rules, and transformer area merging logic, are incorporated into the objective function as penalty terms. A case study on a 220kV substation shows that the proposed method results in better-balanced occupancy across regions and a more compact and readable layout. Experimental results demonstrate improvements of 11.6 percent in optimal performance and 24.2 percent in average performance compared to the standard genetic algorithm. The method proves effective for handling constrained and dynamically changing layout tasks in intelligent substation design.
AbstractList This paper proposes an automatic region-based layout optimization method for substation main wiring diagrams using a improved genetic algorithm. The method addresses the problems of low space utilization and rigid region division caused by template-based layouts. A two-segment chromosome structure is designed to encode both region assignment and interval ordering. The algorithm includes repair mechanisms and enhanced crossover and mutation operations to improve search efficiency and solution stability. In the layout modeling phase, interval units are abstracted as rectangular blocks to enable unified spatial representation. A set of graph-structured constraints, including voltage isolation, region boundary rules, and transformer area merging logic, are incorporated into the objective function as penalty terms. A case study on a 220kV substation shows that the proposed method results in better-balanced occupancy across regions and a more compact and readable layout. Experimental results demonstrate improvements of 11.6 percent in optimal performance and 24.2 percent in average performance compared to the standard genetic algorithm. The method proves effective for handling constrained and dynamically changing layout tasks in intelligent substation design.
Author Ren, Hao
Xu, Xiaofeng
Shen, Zeliang
Qin, Jun
Liu, Junyi
Peng, Cong
Fan, Qing
Author_xml – sequence: 1
  givenname: Qing
  surname: Fan
  fullname: Fan, Qing
  email: fq@js.sgcc.com.cn
  organization: State Grid Jiangsu Electric Power Co., Ltd,Equipment Management Department,Nanjing,China
– sequence: 2
  givenname: Junyi
  surname: Liu
  fullname: Liu, Junyi
  email: liujunyi921@nuaa.edu.cn
  organization: Nanjing University of Aeronautics and Astronautics,School of Automation,Nanjing,China
– sequence: 3
  givenname: Hao
  surname: Ren
  fullname: Ren, Hao
  email: renhao@epri.sgcc.com.cn
  organization: Nanjing Branch China Electric Power Research Institute Co., Ltd,Nanjing,China
– sequence: 4
  givenname: Jun
  surname: Qin
  fullname: Qin, Jun
  email: qinjun@js.sgcc.com.cn
  organization: State Grid Wuxi Power Supply Company,Equipment Management Department,Wuxi,China
– sequence: 5
  givenname: Xiaofeng
  surname: Xu
  fullname: Xu, Xiaofeng
  email: xfxu@js.sgcc.com.cn
  organization: State Grid Wuxi Power Supply Company,Equipment Management Department,Wuxi,China
– sequence: 6
  givenname: Zeliang
  surname: Shen
  fullname: Shen, Zeliang
  email: zeliangsan@gmail.com
  organization: Nanjing Branch China Electric Power Research Institute Co., Ltd,Nanjing,China
– sequence: 7
  givenname: Cong
  surname: Peng
  fullname: Peng, Cong
  email: pengcong@nuaa.edu.cn
  organization: Nanjing University of Aeronautics and Astronautics,School of Astronautics,Nanjing,China
BookMark eNo1T91OwjAYrYleKPIGXtQHGHbf6LpeTkQkmSERopfk2_g6mtCVbJ0JPr0j6NXJ-U3OHbtufEOMPcZiEsdCP-Xz99l6nkrQMAEB8qxOYSrgio210lmSxHLIxekt2-d98A6DrfgH1dY30TN2tOMFnnwf-OoYrLM_g-8b7g1f92UXLuzLtrap-YvFukXX8U-LfOmOrf8e6gtq6LyZH2rf2rB33T27MXjoaPyHI7Z5nW9mb1GxWixneRFZnYQolTuglKRRhhBQaAkpKJWpqcFKSkFKaMAMM6VFaSTEld4JglKXMiMjqmTEHi6zloi2x9Y6bE_b___JL1EqV0M
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AEMCSE65292.2025.11042402
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331510916
EndPage 241
ExternalDocumentID 11042402
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Project of State Grid
  funderid: 10.13039/501100013096
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-65d2e6e5f7fea2a09526277874fac550e7092a8a8790bf521c9d0e2b9b58ef0c3
IEDL.DBID RIE
IngestDate Wed Jul 02 05:55:41 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-65d2e6e5f7fea2a09526277874fac550e7092a8a8790bf521c9d0e2b9b58ef0c3
PageCount 5
ParticipantIDs ieee_primary_11042402
PublicationCentury 2000
PublicationDate 2025-May-9
PublicationDateYYYYMMDD 2025-05-09
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-9
  day: 09
PublicationDecade 2020
PublicationTitle 2025 8th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)
PublicationTitleAbbrev AEMCSE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9078982
Snippet This paper proposes an automatic region-based layout optimization method for substation main wiring diagrams using a improved genetic algorithm. The method...
SourceID ieee
SourceType Publisher
StartPage 237
SubjectTerms Biological cells
Genetic algorithms
graph-structured constraints
improved genetic algorithm
Layout
layout optimization
Software engineering
Stability analysis
substation main wiring diagrams
Substations
Transformers
two-segment chromosome
Voltage
Wiring
Title Automatic Region-Based Layout Optimization of Substation Wiring Diagrams Via Improved Genetic Algorithms
URI https://ieeexplore.ieee.org/document/11042402
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6EGONJjRh_pyZeC6Pr1vWICPGASJQgN9J1r7IEmIHNxP_ethsaDx68NU1_JG3ar33vfd9D6JbJiDGuGEk86ROrX05EJNtEBW0tzYdIgUvJMhnw4TCaTsWoIqs7LgwAuOAzaNqi8-UnmSqsqaxloIpZb0AN1TgPS7LWHrqpdDNbnd5j96UXBlRYhhUNmtv2vzKnOODoH_xzykPU-KHg4dE3uByhHVgdo3mnyDOnsYqfwQYSkzsDQgkeyM-syPGTOf7LileJM43tpVB62vFrau13-D6VNhprgyepxKU9wXS30tN2zM7iLVun-Xy5aaBxvzfuPpAqVQJJhZ-TMEgohBBorkFSaZ5NNKTcnEWmpTJ_EOCeoDKSERderA1iK5F4QGMRBxFoT_knqL7KVnCKsBSS0yTQVHJgzPdjzyqSJcKPKY88n52hhl2l2XsphjHbLtD5H_UXaN_uhYsRFJeonq8LuEK76iNPN-trt4VfKc2eyQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCY6jXpS44y_xcQrG1IY5Tjnlhm7uegyd1toC66JW83WmvjfC7TTePDgjZAACYT3wXvv-x4A11T6lPKIohhLD1n9ciR8eYMidqOl-RBFypVkGQW83_fHYzEoyeqOC6OUcslnqmabLpYfp1FuXWV1A1XURgPWwQajlOCCrrUFrkrlzHqz3Ws9txuMCMuxIqy2GvGrdoqDjs7uPxfdA9UfEh4cfMPLPlhT8wMwbeZZ6lRW4ZOyqcTo1sBQDAP5meYZfDQGYFYyK2GqoTULRawdviTWgwfvEmnzsZZwlEhYeBTMcCs-bedsvr2miySbzpZVMOy0h60uKosloER4GWqwmKiGYpprJYk0DyfSINzcRqplZH4himNBpC99LnCoDWZHIsaKhCJkvtI48g5BZZ7O1RGAUkhOYqaJ5IpSzwux1SSLhRcS7mOPHoOq3aXJeyGHMVlt0Mkf_ZdguzvsBZPgvv9wCnbsubiMQXEGKtkiV-dgM_rIkuXiwh3nF5jcohA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+8th+International+Conference+on+Advanced+Electronic+Materials%2C+Computers+and+Software+Engineering+%28AEMCSE%29&rft.atitle=Automatic+Region-Based+Layout+Optimization+of+Substation+Wiring+Diagrams+Via+Improved+Genetic+Algorithms&rft.au=Fan%2C+Qing&rft.au=Liu%2C+Junyi&rft.au=Ren%2C+Hao&rft.au=Qin%2C+Jun&rft.date=2025-05-09&rft.pub=IEEE&rft.spage=237&rft.epage=241&rft_id=info:doi/10.1109%2FAEMCSE65292.2025.11042402&rft.externalDocID=11042402