Virtual Wind Tower Siting Method Based on Multi-Objective Mayfly Optimization Algorithm

This study proposes a virtual wind tower siting model using a Multi-Mayfly Optimization Algorithm (M-MOA) to address inefficiencies in renewable energy planning. By integrating wind speed, geographic constraints (urban areas, roads, landscapes), and turbine layout, candidate sites are screened. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (International Conference on Computer Engineering and Applications. Online) s. 656 - 659
Hlavní autoři: Duan, Junhong, Song, Jun, Niu, Wei, Zhang, Hailong, Tu, Chao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 25.04.2025
Témata:
ISSN:2159-1288
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study proposes a virtual wind tower siting model using a Multi-Mayfly Optimization Algorithm (M-MOA) to address inefficiencies in renewable energy planning. By integrating wind speed, geographic constraints (urban areas, roads, landscapes), and turbine layout, candidate sites are screened. The M-MOA optimizes locations through power generation, revenue, and cost objectives. Experiments show the algorithm achieves higher annual profit than benchmark methods (GA, SA, MOA) while avoiding environmentally sensitive zones. Key innovations include population interaction mechanisms and terrain-adaptive cost Results validate the method's effectiveness for sustainable wind energy development.
ISSN:2159-1288
DOI:10.1109/ICCEA65460.2025.11103183