Virtual Wind Tower Siting Method Based on Multi-Objective Mayfly Optimization Algorithm

This study proposes a virtual wind tower siting model using a Multi-Mayfly Optimization Algorithm (M-MOA) to address inefficiencies in renewable energy planning. By integrating wind speed, geographic constraints (urban areas, roads, landscapes), and turbine layout, candidate sites are screened. The...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (International Conference on Computer Engineering and Applications. Online) s. 656 - 659
Hlavní autoři: Duan, Junhong, Song, Jun, Niu, Wei, Zhang, Hailong, Tu, Chao
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 25.04.2025
Témata:
ISSN:2159-1288
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study proposes a virtual wind tower siting model using a Multi-Mayfly Optimization Algorithm (M-MOA) to address inefficiencies in renewable energy planning. By integrating wind speed, geographic constraints (urban areas, roads, landscapes), and turbine layout, candidate sites are screened. The M-MOA optimizes locations through power generation, revenue, and cost objectives. Experiments show the algorithm achieves higher annual profit than benchmark methods (GA, SA, MOA) while avoiding environmentally sensitive zones. Key innovations include population interaction mechanisms and terrain-adaptive cost Results validate the method's effectiveness for sustainable wind energy development.
AbstractList This study proposes a virtual wind tower siting model using a Multi-Mayfly Optimization Algorithm (M-MOA) to address inefficiencies in renewable energy planning. By integrating wind speed, geographic constraints (urban areas, roads, landscapes), and turbine layout, candidate sites are screened. The M-MOA optimizes locations through power generation, revenue, and cost objectives. Experiments show the algorithm achieves higher annual profit than benchmark methods (GA, SA, MOA) while avoiding environmentally sensitive zones. Key innovations include population interaction mechanisms and terrain-adaptive cost Results validate the method's effectiveness for sustainable wind energy development.
Author Duan, Junhong
Niu, Wei
Zhang, Hailong
Song, Jun
Tu, Chao
Author_xml – sequence: 1
  givenname: Junhong
  surname: Duan
  fullname: Duan, Junhong
  email: junhongduan@yeah.net
  organization: Gansu Electric Power Company of State Grid,Lanzhou,China
– sequence: 2
  givenname: Jun
  surname: Song
  fullname: Song, Jun
  email: cnsongjun@gs.sgcc.com
  organization: Gansu Electric Power Company of State Grid,Lanzhou,China
– sequence: 3
  givenname: Wei
  surname: Niu
  fullname: Niu, Wei
  email: cnniuw@gs.sgcc.com.cn
  organization: Gansu Electric Power Company of State Grid,Lanzhou,China
– sequence: 4
  givenname: Hailong
  surname: Zhang
  fullname: Zhang, Hailong
  email: 90002607@gs.sgcc.com.cn
  organization: Gansu Electric Power Company of State Grid,Lanzhou,China
– sequence: 5
  givenname: Chao
  surname: Tu
  fullname: Tu, Chao
  email: gansutuchao@126.com
  organization: Zhangye Power Supply Company of Gansu Electric Power Company of State Grid,Zhangye,China
BookMark eNo1kMFOwkAURUejiYj9AxfzA8WZvs50ZokNKgmEhUSW5E07hUdKS9pBg19vE3V1k5OTs7j37KZpG88Yl2IipbBP8zyfTbVKtZgkIlEDlAKkgSsW2cwaAKlSAAHXbJRIZWOZGHPHor4_CCEgkVJbPWKbD-rCGWu-oabk6_bLd_ydAjU7vvRh35b8GXtf8rbhy3MdKF65gy8CfXq-xEtVX_jqFOhI3xhocKb1ru0o7I8P7LbCuvfR347Z-mW2zt_ixep1nk8XMVkIsSqcR7TaSHQZVlWiQKE2IlMVCAeYZto4l6LUA1TZ4GoDhbNQKmNQOxizx98see-3p46O2F22_1fAD1JXVao
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCEA65460.2025.11103183
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331543303
EISSN 2159-1288
EndPage 659
ExternalDocumentID 11103183
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-5cbeaa9681ab7aff2535a68075f30b3a4768bb4a1668057eaa683cb93d588a6b3
IEDL.DBID RIE
IngestDate Wed Aug 20 06:20:56 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-5cbeaa9681ab7aff2535a68075f30b3a4768bb4a1668057eaa683cb93d588a6b3
PageCount 4
ParticipantIDs ieee_primary_11103183
PublicationCentury 2000
PublicationDate 2025-April-25
PublicationDateYYYYMMDD 2025-04-25
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-25
  day: 25
PublicationDecade 2020
PublicationTitle Proceedings (International Conference on Computer Engineering and Applications. Online)
PublicationTitleAbbrev ICCEA
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211696
Score 1.9065416
Snippet This study proposes a virtual wind tower siting model using a Multi-Mayfly Optimization Algorithm (M-MOA) to address inefficiencies in renewable energy...
SourceID ieee
SourceType Publisher
StartPage 656
SubjectTerms Costs
Genetic algorithms
Loss measurement
Multi-Mayfly optimization algorithm
Optimization
Planning
Poles and towers
Renewable energy
Renewable energy sources
Site selection
Urban areas
Wind energy
Wind speed
Wind tower
Title Virtual Wind Tower Siting Method Based on Multi-Objective Mayfly Optimization Algorithm
URI https://ieeexplore.ieee.org/document/11103183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLZoxcBUjiJueWB1j_geS9UKhh4SFe1W2YkDQW2CQorUf4_tJkUMDGyWZUuWn_2e3_H5A-A-jkMZ8EAgIblCJFQaSYINCkUU05AYjInyZBN8PBaLhZyWYHWPhTHG-OIz03JNn8uPsnDjQmVtey_9GayBGudsB9baB1SwdWWYZFW1Tke2n_r9Qc-BdTrWDwxoq5r-i0jF25Fh458rOAbNH0QenO5tzQk4MOkpaFSUDLC8oWdg_pLkDhEC59bXhjNHgQafE1faDEeeKxo-WLMVwSyFHnqLJvp9p_LgSG3j1RZOrA5Zl-BM2Fu9ZnlSvK2bYDYczPqPqOROQInEBaKhNkpJJrpKcxXHAcVUMffxcIw7GitivQytieoy20m5HcsEDrXEERVCMY3PQT3NUnMBoH1ydK3KZJpSTSQ3ktDYJV8jGQVcdIJL0HT7tPzY_Y6xrLbo6o_-a3DkpOEyMgG9AfUi35hbcBh-Fclnfudl-g0qVaHx
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8MgGCc6TfQ0HzO-5eC1e5RC4TiXLVvcK7Fxuy1AqdZsramdyf57gbUaDx68EUII4YPv43v8-AFwH0WSub5LHcp87niSC4d5SDmShhGWnkLI45Zswh-P6XzOpgVY3WJhlFK2-EzVTdPm8sNUrk2orKHvpT2Du2DPUGcVcK3vkArSzgxhpKzXabLGoNPptg1cp6k9QRfXywl-UalYS9Kr_nMNR6D2g8mD029rcwx2VHICqiUpAyzu6CmYPceZwYTAmfa2YWBI0OBTbIqb4ciyRcMHbbhCmCbQgm-diXjbKj044ptouYETrUVWBTwTtpcvaRbnr6saCHrdoNN3CvYEJ2Yod7AUinNGaIsLn0eRixHmxHw9HKGmQNzTfoYQHm8R3Yl9PZZQJAVDIaaUE4HOQCVJE3UOoH50tLTSJAJj4TFfMQ9HJv0astD1adO9ADWzT4v37f8Yi3KLLv_ovwMH_WA0XAwH48crcGgkY_IzLr4GlTxbqxuwLz_z-CO7tfL9AssCpTo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Conference+on+Computer+Engineering+and+Applications.+Online%29&rft.atitle=Virtual+Wind+Tower+Siting+Method+Based+on+Multi-Objective+Mayfly+Optimization+Algorithm&rft.au=Duan%2C+Junhong&rft.au=Song%2C+Jun&rft.au=Niu%2C+Wei&rft.au=Zhang%2C+Hailong&rft.date=2025-04-25&rft.pub=IEEE&rft.eissn=2159-1288&rft.spage=656&rft.epage=659&rft_id=info:doi/10.1109%2FICCEA65460.2025.11103183&rft.externalDocID=11103183