Medical Image Segmentation via Sparse Coding Decoder

Transformers have achieved significant success in medical image segmentation, owing to their capability to capture long-range dependencies. Previous studies have employed either pure Transformer or hybrid CNN-Transformer architectures in the encoder module to enhance their ability to extract more co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) s. 1 - 5
Hlavní autoři: Zeng, Long, Zhu, Mingwei, Wu, Kaigui, Li, Zefang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 06.04.2025
Témata:
ISSN:2379-190X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Transformers have achieved significant success in medical image segmentation, owing to their capability to capture long-range dependencies. Previous studies have employed either pure Transformer or hybrid CNN-Transformer architectures in the encoder module to enhance their ability to extract more complex features. However, these models still exhibit limitations in fine-grained local feature extraction and effectively suppressing irrelevant information. To address this issue, a convolution sparse vector coding-based decoder is proposed, namely the CAScaded multi-layer Convolutional Sparse vector Coding DEcoder (CASCSCDE), which suppresses noise by refining the feature representation to be more sparse and accurate through sparse coding and localized convolution, effectively minimizing less important, noisy components. To demonstrate the effectiveness and versatility of our CASCSCDE, we incorporate our decoder into both pure Transformer and hybrid CNN-Transformer models, such as SwinUNet and TransUNet. Our experiments demonstrate that integrating CASCSCDE into the models significantly enhances segmentation performance. The CASCSCDE opens new ways for constructing decoders based on convolutional sparse vector coding.
AbstractList Transformers have achieved significant success in medical image segmentation, owing to their capability to capture long-range dependencies. Previous studies have employed either pure Transformer or hybrid CNN-Transformer architectures in the encoder module to enhance their ability to extract more complex features. However, these models still exhibit limitations in fine-grained local feature extraction and effectively suppressing irrelevant information. To address this issue, a convolution sparse vector coding-based decoder is proposed, namely the CAScaded multi-layer Convolutional Sparse vector Coding DEcoder (CASCSCDE), which suppresses noise by refining the feature representation to be more sparse and accurate through sparse coding and localized convolution, effectively minimizing less important, noisy components. To demonstrate the effectiveness and versatility of our CASCSCDE, we incorporate our decoder into both pure Transformer and hybrid CNN-Transformer models, such as SwinUNet and TransUNet. Our experiments demonstrate that integrating CASCSCDE into the models significantly enhances segmentation performance. The CASCSCDE opens new ways for constructing decoders based on convolutional sparse vector coding.
Author Wu, Kaigui
Zhu, Mingwei
Zeng, Long
Li, Zefang
Author_xml – sequence: 1
  givenname: Long
  surname: Zeng
  fullname: Zeng, Long
  email: longzeng@stu.cqu.edu.cn
  organization: Chongqing University,School of Computer Science,Chongqing,China
– sequence: 2
  givenname: Mingwei
  surname: Zhu
  fullname: Zhu, Mingwei
  email: mingweizhu@stu.cqu.edu.cn
  organization: Chongqing University,School of Energy and Power Engineering,Chongqing,China
– sequence: 3
  givenname: Kaigui
  surname: Wu
  fullname: Wu, Kaigui
  email: kaiguiwu@cqu.edu.cn
  organization: Chongqing University,School of Computer Science,Chongqing,China
– sequence: 4
  givenname: Zefang
  surname: Li
  fullname: Li, Zefang
  email: zefangli@cqu.edu.cn
  organization: Chongqing University Qianjiang Hospital,Chongqing,China
BookMark eNo1z19LwzAUBfAoCm5z38CH-AFab3KTNnmU-m8w2aB78G2kyW2JrO1oi-C3t6A-nYcDh99Zsquu74ixewGpEGAfNsVjWe6VzTJIJUidCjDGygwu2Nrm1qAGzEyuxCVbSMxtIix83LDlOH4CwFyYBVPvFKJ3J75pXUO8pKalbnJT7Dv-FR0vz24YiRd9iF3Dn8j3gYZbdl2700jrv1yxw8vzoXhLtrvXGbVNosUp0cajrFQOBLOwRuVqb2si0JXCoEg7pY2tBRKArKrZSQo95WC8yiB4XLG739lIRMfzEFs3fB__T-IPYlpIJA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP49660.2025.10889260
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350368741
EISSN 2379-190X
EndPage 5
ExternalDocumentID 10889260
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i93t-58c32b470e0660f34afc9fee05b43d4e5a4589f13e002bb741e43ce708c460dc3
IEDL.DBID RIE
IngestDate Wed Nov 19 08:27:13 EST 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-58c32b470e0660f34afc9fee05b43d4e5a4589f13e002bb741e43ce708c460dc3
PageCount 5
ParticipantIDs ieee_primary_10889260
PublicationCentury 2000
PublicationDate 2025-April-6
PublicationDateYYYYMMDD 2025-04-06
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-6
  day: 06
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.294698
Snippet Transformers have achieved significant success in medical image segmentation, owing to their capability to capture long-range dependencies. Previous studies...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Biomedical imaging
Convolution
Convolutional codes
Decoding
Feature extraction
Image coding
Image segmentation
Medical image segmentation
Noise
Sparse Coding
Transformer
Transformers
Vectors
Title Medical Image Segmentation via Sparse Coding Decoder
URI https://ieeexplore.ieee.org/document/10889260
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwMhEJ7Yxhi9-KrxHUy8bmUXWOBoqo29NE22h96aBWZND902ff1-YbutevDgjZAAGQjzzcB8MwDPTuRxirSIhIe7iLvURXmhRMR1bFmO1ChnqmITst9Xo5Ee1GT1iguDiFXwGbZDs_rLdzO7Dk9l_oYrpb0B3oCGlOmWrLVXu0pydQRPdRLNl17nNcsGPCSf9F5gItq7wb_KqFQo0j395_pn0Prm45HBHmnO4QDLCzj5kUrwEnj940J6U68hSIaf05pVVJLNJCfZ3HuwSDqzMAN5w0BlX7Rg2H0fdj6iuiJCNNFsFQllWWK4pOgNBVownhdWF4hUGM4cR5FzoXQRM_R6zhhvLCBnFiVVlqfUWXYFzXJW4jUQa1Hp1ArjnA6YrhNnHUuckTK3scEbaAX5x_NtzovxTvTbP_rv4DjschXTkt5Dc7VY4wMc2s1qslw8Vif1BSkxlF4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4oGh8XXxjf1sTrYnfb7rZHgxKISEiWAzeybWcNBx5B4PfbLgvqwYO3pkmbTpvON9PONwPwaEUWxkjzQDi4C7iNbZDlUgRchYZlSLW0uig2kXQ6st9X3ZKsXnBhELEIPsOabxZ_-XZiFv6pzN1wKZUzwLdhR3Ae0RVda6N4ZcLlHjyUaTSfWvXnNO1yn37S-YGRqK2H_yqkUuBI4-ifKziG6jcjj3Q3WHMCWzg-hcMfyQTPgJd_LqQ1cjqCpPgxKnlFY7IcZiSdOh8WSX3iZyAv6Mnssyr0Gq-9ejMoayIEQ8XmgZCGRZonFJ2pQHPGs9yoHJEKzZnlKDIupMpDhk7Tae3MBeTMYEKl4TG1hp1DZTwZ4wUQY1Cq2AhtrfKoriJrLIusTpLMhBovoerlH0xXWS8Ga9Gv_ui_h_1m7709aLc6b9dw4He8iHCJb6Ayny3wFnbNcj78nN0Vp_YFE-uXpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Medical+Image+Segmentation+via+Sparse+Coding+Decoder&rft.au=Zeng%2C+Long&rft.au=Zhu%2C+Mingwei&rft.au=Wu%2C+Kaigui&rft.au=Li%2C+Zefang&rft.date=2025-04-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICASSP49660.2025.10889260&rft.externalDocID=10889260