A Comparison of Particle Swarm Optimization and Mixed-Integer Nonlinear Programming Techniques for Maintenance Scheduling in Power Systems

Maintenance scheduling remains an essential part of power system operations, and finding mathematical solutions to this task is a priority for the scientific and engineering community. Its accurate and fast resolution would increase power system operation efficiency, as well as reduce the risk of en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 International Ural Conference on Electrical Power Engineering (UralCon) S. 641 - 646
Hauptverfasser: Gubin, Pavel Y., Valiev, Rustam T., Kotov, Oleg M.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 25.09.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Maintenance scheduling remains an essential part of power system operations, and finding mathematical solutions to this task is a priority for the scientific and engineering community. Its accurate and fast resolution would increase power system operation efficiency, as well as reduce the risk of energy not supplied to consumers. There are two main mathematical approaches to solving this problem: mixed-integer nonlinear programming methods and metaheuristic approaches. The well-known advantages of the latter are greater speed and the ability to avoid local optima to get closer to the global optimum. This article compares the effectiveness of these two approaches for the problem of maintenance scheduling one month ahead, considering unit commitment. The first algorithm is an example of a metaheuristic approach-the particle swarm optimization method. The second algorithm is a mixed-integer nonlinear programming algorithm based on the branch and bound method. The experiment demonstrated that, despite relatively similar optimization results, the PSO-based approach was significantly more computationally intensive. The MINLP approach completed the task in 6 hours, while the metaheuristic one took 7 days. The study shows that metaheuristics are not a one-size-fits-all solution, at least in the case of maintenance scheduling, and they may not be efficient for real-world power systems.
AbstractList Maintenance scheduling remains an essential part of power system operations, and finding mathematical solutions to this task is a priority for the scientific and engineering community. Its accurate and fast resolution would increase power system operation efficiency, as well as reduce the risk of energy not supplied to consumers. There are two main mathematical approaches to solving this problem: mixed-integer nonlinear programming methods and metaheuristic approaches. The well-known advantages of the latter are greater speed and the ability to avoid local optima to get closer to the global optimum. This article compares the effectiveness of these two approaches for the problem of maintenance scheduling one month ahead, considering unit commitment. The first algorithm is an example of a metaheuristic approach-the particle swarm optimization method. The second algorithm is a mixed-integer nonlinear programming algorithm based on the branch and bound method. The experiment demonstrated that, despite relatively similar optimization results, the PSO-based approach was significantly more computationally intensive. The MINLP approach completed the task in 6 hours, while the metaheuristic one took 7 days. The study shows that metaheuristics are not a one-size-fits-all solution, at least in the case of maintenance scheduling, and they may not be efficient for real-world power systems.
Author Gubin, Pavel Y.
Kotov, Oleg M.
Valiev, Rustam T.
Author_xml – sequence: 1
  givenname: Pavel Y.
  surname: Gubin
  fullname: Gubin, Pavel Y.
  email: pavel.gubin@urfu.ru
  organization: Ural Power Engineering Institute, Ural Federal University,Yekaterinburg,Russia
– sequence: 2
  givenname: Rustam T.
  surname: Valiev
  fullname: Valiev, Rustam T.
  email: r.t.valiev@urfu.ru
  organization: Ural Power Engineering Institute, Ural Federal University,Yekaterinburg,Russia
– sequence: 3
  givenname: Oleg M.
  surname: Kotov
  fullname: Kotov, Oleg M.
  email: o.m.kotov@urfu.ru
  organization: Ural Power Engineering Institute, Ural Federal University,Yekaterinburg,Russia
BookMark eNo1kEtLw0AUhUfQhdb-AxeD-9SbeeSxLMFHobWB1nW5Te60A8lMnaTU-hP81UbU1YFzDh-cc8MunXfE2H0MkziG_OEtYFN4l6QC1ESA0IMtIEkBLtg4T_NMylhrKaS6Zl9TXvj2gMF23nFveImht1VDfHXC0PLlobet_cTeDjG6mi_sB9XRzPW0o8BfvWusIwy8DH4XsG2t2_E1VXtn34_UceMDX6Ad6g5dNVCrPdXH5qdlHS_9aYCszl1PbXfLrgw2HY3_dMTWT4_r4iWaL59nxXQe2Vz2kU4ohRQoUzTMQ2HqrTEZgU6VBoOSKBeZ3G6rGICEBEGoalSqApXkoLQcsbtfrCWizSHYFsN58_-Q_AbCHGSm
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/UralCon67204.2025.11206700
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331553234
EndPage 646
ExternalDocumentID 11206700
Genre orig-research
GrantInformation_xml – fundername: Russian Science Foundation
  grantid: 25-29-00620
  funderid: 10.13039/501100006769
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-56e7070e84e204a2fdbff8e057450fa3ee9283bbc100e2302ea4da44c04690453
IEDL.DBID RIE
IngestDate Wed Nov 05 07:14:50 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-56e7070e84e204a2fdbff8e057450fa3ee9283bbc100e2302ea4da44c04690453
PageCount 6
ParticipantIDs ieee_primary_11206700
PublicationCentury 2000
PublicationDate 2025-Sept.-25
PublicationDateYYYYMMDD 2025-09-25
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-Sept.-25
  day: 25
PublicationDecade 2020
PublicationTitle 2025 International Ural Conference on Electrical Power Engineering (UralCon)
PublicationTitleAbbrev URALCON
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9229466
Snippet Maintenance scheduling remains an essential part of power system operations, and finding mathematical solutions to this task is a priority for the scientific...
SourceID ieee
SourceType Publisher
StartPage 641
SubjectTerms Approximation algorithms
Maintenance
maintenance scheduling
Metaheuristics
mixed-integer nonlinear programming
optimization
particle swarm algorithm
Particle swarm optimization
Power systems
Power transmission lines
Processor scheduling
Programming
Schedules
Scheduling
unit commitment
Title A Comparison of Particle Swarm Optimization and Mixed-Integer Nonlinear Programming Techniques for Maintenance Scheduling in Power Systems
URI https://ieeexplore.ieee.org/document/11206700
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcAEiCK-dQNr2nzYcTKiioqBlkgUqVvl2OcqEk1QmgK_gV-N7aZFDAxsViRfpDs7vnPuvUfILacyTVItPCbNCqaYJ56QIvKQ5kGMjGKgnGrJI59MktkszVqwusPCIKJrPsO-Hbp_-aqSa3tVNjC5gYOVdEiHc74Ba7VEooGfDl5q8TqsytjqrpjKL2T97YRf0inu5Bgd_vOdR6T3g8GDbHe6HJM9LE_I1x0Md8KBUGnI2sjD84eol_BkPgDLFlkJolQwLj5Refbab4E1TDa8GKK2lm1b1tKYhumWxnUFJoOFsbAUEpaHw1g1IVW2V30BRQmZVVSDluO8R6aj--nwwWvVFLwijRqPxcjN9saEonGPCLXKtU7QpGuU-VpEiKnJNPJcBr6Ppi4JUVAlKJWugKYsOiXdsirxjID2k5ynoUKnVOLHgofGtvR1III8psE56Vk_zt82fBnzrQsv_nh-SQ5stGwXRsiuSLep13hN9uV7U6zqGxflb-YIrSE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46BT2pOPG3OXjt1rRJfxxlOCZutWCF3UaavIyCa6Xb1L_Bv9ok6yYePHgLhbzCe0nzXvq-70PoNqQijmLFHSb0CqaQRw4X3HeA5iQARoFIq1oyDJMkGo_jtAGrWywMANjmM-iYof2XLyuxNFdlXZ0bWFjJNtphlHpkBddqqESJG3dfav7aq8rAKK_o2s9jnfWUX-Ip9uzoH_zzrYeo_YPCw-nmfDlCW1Aeo6873NtIB-JK4bSJPX7-4PUMP-lPwKzBVmJeSjwqPkE65uJvCjVOVswYvDaWTWPWTJvG2ZrIdY51DotH3JBIGCYObVUHVZpu9SkuSpwaTTXcsJy3Uda_z3oDp9FTcIrYXzgsgFBvcIgoaPdwT8lcqQh0wkaZq7gPEOtcI88FcV3QlYkHnEpOqbAlNGX-CWqVVQmnCCs3ysPYk2C1StyAh562LVxFOMkDSs5Q2_hx8rZizJisXXj-x_MbtDfIRsPJ8CF5vED7JnKmJ8Njl6i1qJdwhXbF-6KY19c24t8PirBo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Ural+Conference+on+Electrical+Power+Engineering+%28UralCon%29&rft.atitle=A+Comparison+of+Particle+Swarm+Optimization+and+Mixed-Integer+Nonlinear+Programming+Techniques+for+Maintenance+Scheduling+in+Power+Systems&rft.au=Gubin%2C+Pavel+Y.&rft.au=Valiev%2C+Rustam+T.&rft.au=Kotov%2C+Oleg+M.&rft.date=2025-09-25&rft.pub=IEEE&rft.spage=641&rft.epage=646&rft_id=info:doi/10.1109%2FUralCon67204.2025.11206700&rft.externalDocID=11206700