Low-carbon Building Group Energy-saving Scheduling Optimization Method Based on Genetic Programming from the Perspective of New Quality Productive Forces

With the increasing global energy demand and increasingly serious environmental problems, energy efficiency optimization of low-carbon building groups has become an important research direction in the field of modern construction. How to effectively schedule energy consumption in building groups and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 International Conference on Artificial Intelligence and Digital Ethics (ICAIDE) s. 541 - 544
Hlavní autoři: Cao, Shupei, Zhao, Shuying
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.05.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the increasing global energy demand and increasingly serious environmental problems, energy efficiency optimization of low-carbon building groups has become an important research direction in the field of modern construction. How to effectively schedule energy consumption in building groups and reduce carbon emissions has become a core issue that needs to be solved urgently. This study proposes an energy-saving scheduling optimization method for low-carbon building groups based on a genetic programming algorithm, aiming to achieve efficient energy utilization and minimize carbon emissions through an intelligent scheduling scheme. This paper uses a genetic programming algorithm to optimize the energy scheduling strategy in combination with the energy consumption characteristics and climatic conditions of the building groups. By establishing a comprehensive fitness function that maximizes energy efficiency and minimizes carbon emissions, combined with the data of actual building groups, experimental parameters including population size, crossover rate, mutation rate, etc. are designed, and compared with traditional genetic algorithms and particle swarm optimization algorithms.
AbstractList With the increasing global energy demand and increasingly serious environmental problems, energy efficiency optimization of low-carbon building groups has become an important research direction in the field of modern construction. How to effectively schedule energy consumption in building groups and reduce carbon emissions has become a core issue that needs to be solved urgently. This study proposes an energy-saving scheduling optimization method for low-carbon building groups based on a genetic programming algorithm, aiming to achieve efficient energy utilization and minimize carbon emissions through an intelligent scheduling scheme. This paper uses a genetic programming algorithm to optimize the energy scheduling strategy in combination with the energy consumption characteristics and climatic conditions of the building groups. By establishing a comprehensive fitness function that maximizes energy efficiency and minimizes carbon emissions, combined with the data of actual building groups, experimental parameters including population size, crossover rate, mutation rate, etc. are designed, and compared with traditional genetic algorithms and particle swarm optimization algorithms.
Author Cao, Shupei
Zhao, Shuying
Author_xml – sequence: 1
  givenname: Shupei
  surname: Cao
  fullname: Cao, Shupei
  email: 778519311@qq.com
  organization: Guangdong University of Science and Technology,2022Internet of Things Engineering Undergraduate Class3,Guangdong,China
– sequence: 2
  givenname: Shuying
  surname: Zhao
  fullname: Zhao, Shuying
  email: zhaoshuying682@163.com
  organization: Guangdong University of Science and Technology,Guangdong,China
BookMark eNo1UEFOwzAQNBIcoPQHHMwDUuI4m8RHWtpSqdAieq8ce9NaSuLIcajKT_gtiQqnnZ3ZGWn2jlzXtkZCHlk4YSwUT6vZ8-plnkCcJJMojKBnWSZSyK7IWKQi45xBxDOAW_KztqdASZfbmk47U2pTH-jS2a6h8xrd4Ry08mvgPtURdVcOcNN4U5lv6U1vekN_tJpOZYua9vsSa_RG0a2zByerajAUzlbUH5Fu0bUNKm--kNqCvuOJfnSyNP483OvuoiysU9jek5tCli2O_-aI7Bbz3ew1WG-WfcF1YAT3ASQgNXIZKYFa9j1zHUMWFSGgSoo0SsI45ywHDVykqmCoIYujOEUhQwYi5iPycIk1iLhvnKmkO-__H8Z_AXBLaU8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAIDE65466.2025.11189758
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331523855
EndPage 544
ExternalDocumentID 11189758
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-565ade3a2c9eda111bd4582f05ec6f72604b31b5d5397cf1ed584247e9a015943
IEDL.DBID RIE
IngestDate Sat Oct 25 03:14:26 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-565ade3a2c9eda111bd4582f05ec6f72604b31b5d5397cf1ed584247e9a015943
PageCount 4
ParticipantIDs ieee_primary_11189758
PublicationCentury 2000
PublicationDate 2025-May-29
PublicationDateYYYYMMDD 2025-05-29
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-29
  day: 29
PublicationDecade 2020
PublicationTitle 2025 International Conference on Artificial Intelligence and Digital Ethics (ICAIDE)
PublicationTitleAbbrev ICAIDE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9098796
Snippet With the increasing global energy demand and increasingly serious environmental problems, energy efficiency optimization of low-carbon building groups has...
SourceID ieee
SourceType Publisher
StartPage 541
SubjectTerms Buildings
Carbon dioxide
carbon emission optimization
Energy consumption
Energy efficiency
energy management
energy-saving scheduling
Genetic algorithms
Genetic programming
Genetic programming algorithm
low-carbon building
Optimization methods
Particle swarm optimization
Schedules
Scheduling
Title Low-carbon Building Group Energy-saving Scheduling Optimization Method Based on Genetic Programming from the Perspective of New Quality Productive Forces
URI https://ieeexplore.ieee.org/document/11189758
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4IMcaTGjG-syZeF2y7ZdmjIEQSRRI5cCP7mBoOUlNA40_x3zqzFIkHD9762GbTne3M15n5Zhi79rgHrJJG-EyCkE2vhEWcILRNMhtlWmWRDc0m1GDQGo_1sCSrBy4MAITkM6jTYYjl-9wtyVXWwO-ypRHgVlhFqeaKrLXDrsq6mY1-57Z_1yV2DuUexGl9Pf5X55RgOHp7_5xyn9U2FDw-_DEuB2wLZofs6yH_EM4UNp_xdtnPmgfvEe8GDp-YG3IQ8GcUhacc8xf-hDrhtSRb8sfQL5q30XR5judUdBp3Ds1EWVqv9AARTjjCQj7c8DB5nnFUh3xVceOTxlOdWLrTywtUNTU26nVHnXtR9lYQU50sBMI44yExsdPgDb6k9RRAy25ScM1M4U-OtElkU58iXnFZBB6BSiwVaIP4QcvkiFVn-QyOGY9VDK3YITRUqHW1NNqkGrROrTOgpTxhNVrWyduqesZkvaKnf1w_Y7skPIrQx_qcVRfFEi7YtntfTOfFZZD5N-n5se8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4oGvWkRoxv18Tr8mi3lD0KQiACksiBG9mn4UBrCmj8Kf5bZ5Yi8eDBW1-bTXe2M19n5psh5N7AHlAxl8w4bhmvmZgpwAlMqNCpqhOxqyrfbCIeDOrjsRjmZHXPhbHW-uQzW8JDH8s3qV6iq6wM32VdAMDdJjsR50FlRdfaI3d55cxyt_nQfWwhPwezD4KotB7xq3eKNx3tw39OekSKGxIeHf6Yl2OyZZMT8tVLP5iWmUoT2sg7WlPvP6Itz-Jjc4kuAvoCwjCYZf5Kn0ErzHK6Je37jtG0AcbLUDjHstOwd3AmzNOa4QCknFAAhnS4YWLS1FFQiHRVc-MTn8dKsXinnWagbIpk1G6Nmh2Wd1dgUxEuGAA5aWwoAy2skfCSymAIzVUiq2suht8crsKqikwEiEW7qjUAVQIeWyEBQQgenpJCkib2jNAgDmw90AAOY9C7gkshI2GFiJSWVnB-Toq4rJO3Vf2MyXpFL_64fkv2O6N-b9LrDp4uyQEKEuP1gbgihUW2tNdkV78vpvPsxsv_G1JjtTY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Conference+on+Artificial+Intelligence+and+Digital+Ethics+%28ICAIDE%29&rft.atitle=Low-carbon+Building+Group+Energy-saving+Scheduling+Optimization+Method+Based+on+Genetic+Programming+from+the+Perspective+of+New+Quality+Productive+Forces&rft.au=Cao%2C+Shupei&rft.au=Zhao%2C+Shuying&rft.date=2025-05-29&rft.pub=IEEE&rft.spage=541&rft.epage=544&rft_id=info:doi/10.1109%2FICAIDE65466.2025.11189758&rft.externalDocID=11189758