Leveraging LLM Agents and Digital Twins for Fault Handling in Process Plants

Advances in Automation and Artificial Intelligence continue to enhance the autonomy of process plants in handling various operational scenarios. However, certain tasks, such as fault handling, remain challenging, as they rely heavily on human expertise. This highlights the need for systematic, knowl...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation) pp. 1 - 8
Main Authors: Gill, Milapji Singh, Vyas, Javal, Markaj, Artan, Gehlhoff, Felix, Mercangoz, Mehmet
Format: Conference Proceeding
Language:English
Published: IEEE 09.09.2025
Subjects:
ISSN:1946-0759
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Advances in Automation and Artificial Intelligence continue to enhance the autonomy of process plants in handling various operational scenarios. However, certain tasks, such as fault handling, remain challenging, as they rely heavily on human expertise. This highlights the need for systematic, knowledge-based methods. To address this gap, we propose a methodological framework that integrates Large Language Model (LLM) agents with a Digital Twin environment. The LLM agents continuously interpret system states and initiate control actions, including responses to unexpected faults, with the goal of returning the system to normal operation. In this context, the Digital Twin acts both as a structured repository of plant-specific engineering knowledge for agent prompting and as a simulation platform for the systematic validation and verification of the generated corrective control actions. The evaluation using a mixing module of a process plant demonstrates that the proposed framework is capable not only of autonomously controlling the mixing module, but also of generating effective corrective actions to mitigate a pipe clogging with only a few reprompts.
AbstractList Advances in Automation and Artificial Intelligence continue to enhance the autonomy of process plants in handling various operational scenarios. However, certain tasks, such as fault handling, remain challenging, as they rely heavily on human expertise. This highlights the need for systematic, knowledge-based methods. To address this gap, we propose a methodological framework that integrates Large Language Model (LLM) agents with a Digital Twin environment. The LLM agents continuously interpret system states and initiate control actions, including responses to unexpected faults, with the goal of returning the system to normal operation. In this context, the Digital Twin acts both as a structured repository of plant-specific engineering knowledge for agent prompting and as a simulation platform for the systematic validation and verification of the generated corrective control actions. The evaluation using a mixing module of a process plant demonstrates that the proposed framework is capable not only of autonomously controlling the mixing module, but also of generating effective corrective actions to mitigate a pipe clogging with only a few reprompts.
Author Gill, Milapji Singh
Gehlhoff, Felix
Vyas, Javal
Markaj, Artan
Mercangoz, Mehmet
Author_xml – sequence: 1
  givenname: Milapji Singh
  surname: Gill
  fullname: Gill, Milapji Singh
  email: milapji.gill@hsu-hh.de
  organization: Helmut Schmidt University,Institute of Automation Technology,Hamburg,Germany
– sequence: 2
  givenname: Javal
  surname: Vyas
  fullname: Vyas, Javal
  email: j.vyas24@imperial.ac.uk
  organization: Imperial College London,Autonomous Industrial Systems Lab,United Kingdom
– sequence: 3
  givenname: Artan
  surname: Markaj
  fullname: Markaj, Artan
  email: artan.markaj@hsu-hh.de
  organization: Helmut Schmidt University,Institute of Automation Technology,Hamburg,Germany
– sequence: 4
  givenname: Felix
  surname: Gehlhoff
  fullname: Gehlhoff, Felix
  email: felix.gehlhoff@hsu-hh.de
  organization: Helmut Schmidt University,Institute of Automation Technology,Hamburg,Germany
– sequence: 5
  givenname: Mehmet
  surname: Mercangoz
  fullname: Mercangoz, Mehmet
  email: m.mercangoz@imperial.ac.uk
  organization: Imperial College London,Autonomous Industrial Systems Lab,United Kingdom
BookMark eNo1j1FLwzAUhaMoOGf_gWD-QGfS5La5j2OuTqi4h76PtLktkZpJUxX_vR3q04FzznfgXLOLcAzE2J0UKykF3m_rcp0DSLPKRAazlwkALM5YggUapSSAMsqcs4VEnaeiALxiSYyvQoiZz1HhglUVfdJoex96XlXPfN1TmCK3wfEH3_vJDrz-8iHy7jjy0n4ME9_N4XDq-8D347GlGPl-sDN2wy47O0RK_nTJ6nJbb3Zp9fL4tFlXqUc1pdq1ymTagdAELWDTUkeCEA3JzoDUTetIm1y6vMgdCnLUFFqggUJ2mW3Vkt3-znoiOryP_s2O34f__-oHfFBQ4w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ETFA65518.2025.11205597
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331553838
EISSN 1946-0759
EndPage 8
ExternalDocumentID 11205597
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i93t-4dc3824d504e5c59bcefe0e998e1f8514bcde4861d676d90edeb74098571f2ac3
IEDL.DBID RIE
IngestDate Wed Oct 29 06:13:06 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-4dc3824d504e5c59bcefe0e998e1f8514bcde4861d676d90edeb74098571f2ac3
PageCount 8
ParticipantIDs ieee_primary_11205597
PublicationCentury 2000
PublicationDate 2025-Sept.-9
PublicationDateYYYYMMDD 2025-09-09
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-Sept.-9
  day: 09
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Conference on Emerging Technologies and Factory Automation)
PublicationTitleAbbrev ETFA
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096939
Score 2.3161862
Snippet Advances in Automation and Artificial Intelligence continue to enhance the autonomy of process plants in handling various operational scenarios. However,...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Artificial Intelligence
Autonomy
Digital twins
Fault Handling
Knowledge based systems
Knowledge engineering
Large language models
LLM Agents
Manufacturing automation
Process control
Process Plants
Systematics
Title Leveraging LLM Agents and Digital Twins for Fault Handling in Process Plants
URI https://ieeexplore.ieee.org/document/11205597
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELUoYmACRBHf8sCaNh-OP8YKGnUIVYcM3arEPqNIKEVNCn-fs5tSMTCwJbEjRWdL955z7x4hTwgBIm4NCyopTcAM44HCPBcIzcLExqI0WnuzCTGfy-VSLXqxutfCAIAvPoORu_T_8s1ab91R2RixQegQ8IAMhBA7sdbhQAXBuEpUX8OFd-NpkU246ziGNDBOR_u3f_mo-DSSnf3zA87J8CDIo4ufVHNBjqC5JHkOuA-9yxDN81c6cSqplpaNoS_1mzMDocVX3bQUcSnNyu17R2eup4KbXze0lwhQZ1vUtUNSZNPieRb05ghBrZIOo6oTGTOThgxSnapKg4UQkDxBZBFFsUobYJJHhgtuVAgGKoFcTuLa2LjUyRU5btYNXBMa41AlkRZKgVzMyIqXhglmeVSmzIrohgxdJFYfu_YXq30Qbv94fkdOXbx9IZa6J8fdZgsP5ER_dnW7efSL9g0RLJdK
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgIMEEiCK-8cCaNh-OP8YKGhWRVh0ydKsS-4IioRQ1Kfx9zm5LxcDAlsSOFJ0t3XvOvXuEPCIECHhpmFdIaTxmGPcU5jlPaOZHZShyo7UzmxCTiZzN1HQjVndaGABwxWfQs5fuX75Z6JU9KusjNvAtAt4nBzFjYbCWa-2OVBCOq0htqrjwrj_MkgG3PceQCIZxb_v-LycVl0iSk39-winp7iR5dPqTbM7IHtTnJE0Bd6LzGaJpOqYDq5NqaF4b-ly9WTsQmn1VdUMRmdIkX723dGS7Ktj5VU03IgFqjYvapkuyZJg9jbyNPYJXqajFuOpIhszEPoNYx6rQUIIPSJ8gKBFHsUIbYJIHhgtulA8GCoFsTuLqlGGuowvSqRc1XBIa4lAhkRhKgWzMyILnhglW8iCPWSmCK9K1kZh_rBtgzLdBuP7j-QM5GmXjdJ6-TF5vyLGNvSvLUrek0y5XcEcO9WdbNct7t4DfIY2akQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Conference+on+Emerging+Technologies+and+Factory+Automation%29&rft.atitle=Leveraging+LLM+Agents+and+Digital+Twins+for+Fault+Handling+in+Process+Plants&rft.au=Gill%2C+Milapji+Singh&rft.au=Vyas%2C+Javal&rft.au=Markaj%2C+Artan&rft.au=Gehlhoff%2C+Felix&rft.date=2025-09-09&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FETFA65518.2025.11205597&rft.externalDocID=11205597