Sparse Coding Techniques with Deep Neural Network for EEG Auto Encoding: Enhancing Feature Representation Efficiency
Research on emotion classification using Brain-Computer Interface (BCI) systems is an intriguing aspect. Deep learning has recently been used to classify emotions in BCI systems, and better results have been seen when compared to more conventional classification techniques. Although the high dimensi...
Uloženo v:
| Vydáno v: | International Conference on Recent Advances in Information Technology (Online) s. 1 - 8 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
06.03.2025
|
| Témata: | |
| ISSN: | 2994-287X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Research on emotion classification using Brain-Computer Interface (BCI) systems is an intriguing aspect. Deep learning has recently been used to classify emotions in BCI systems, and better results have been seen when compared to more conventional classification techniques. Although the high dimensionality and noise of Electroencephalography (EEG) signals make it difficult to research brain activity is essential for efficient feature representation. To improve the effectiveness of feature representation, describe a unique method in this paper for EEG autoencoding that combines Sparse Coding Techniques with Deep Neural Networks (SCT-DNN).. Using several encoding and decoding layers, the deep auto-encoder is intended to learn hierarchical representations that capture crucial aspects of the EEG signal. Promote efficient representation and reconstruction of EEG signals by enticing the machine to learn sparse and discriminative features through the use of sparse coding throughout the encoding phase. Results from the experiment demonstrate the advantages of SCT-DNN for learning EEG features and provide insights into the underlying brain processes. Through the synergistic use of deep learning and sparse coding, this proposed work optimizes the efficiency of feature representation, furthering the field of EEG signal analysis. |
|---|---|
| AbstractList | Research on emotion classification using Brain-Computer Interface (BCI) systems is an intriguing aspect. Deep learning has recently been used to classify emotions in BCI systems, and better results have been seen when compared to more conventional classification techniques. Although the high dimensionality and noise of Electroencephalography (EEG) signals make it difficult to research brain activity is essential for efficient feature representation. To improve the effectiveness of feature representation, describe a unique method in this paper for EEG autoencoding that combines Sparse Coding Techniques with Deep Neural Networks (SCT-DNN).. Using several encoding and decoding layers, the deep auto-encoder is intended to learn hierarchical representations that capture crucial aspects of the EEG signal. Promote efficient representation and reconstruction of EEG signals by enticing the machine to learn sparse and discriminative features through the use of sparse coding throughout the encoding phase. Results from the experiment demonstrate the advantages of SCT-DNN for learning EEG features and provide insights into the underlying brain processes. Through the synergistic use of deep learning and sparse coding, this proposed work optimizes the efficiency of feature representation, furthering the field of EEG signal analysis. |
| Author | Rama, M. Khyathi, P Nalini, T Silpa, Ch Saikiran, N. |
| Author_xml | – sequence: 1 givenname: M. surname: Rama fullname: Rama, M. email: meruvarama2004@gmail.com organization: Saveetha Institute of Medical and Technical Sciences(SIMATS), Saveetha University,Saveetha School of Engineering,Dept. of CSE,Chennai,India – sequence: 2 givenname: T surname: Nalini fullname: Nalini, T email: nalinit.sse@saveetha.com organization: Saveetha Institute of Medical and Technical Sciences(SIMATS), Saveetha University,Saveetha School of Engineering,Dept. of CSE,Chennai,India – sequence: 3 givenname: P surname: Khyathi fullname: Khyathi, P email: khyathipurini9@gmail.com organization: QIS College of Engineering and Technology,Dept. of AIMLDS,Ongole,India – sequence: 4 givenname: N. surname: Saikiran fullname: Saikiran, N. email: nlmsaikiran@gmail.com organization: Madanapalle Institute of Technology & Science, madanapalle (A),Dept. of CST,Andhra Pradesh,India – sequence: 5 givenname: Ch surname: Silpa fullname: Silpa, Ch email: silpa.ch@qiscet.edu.in organization: QIS College of Engineering and Technology,Dept. of IT,Ongole,India |
| BookMark | eNo1kMtOAjEYhavRRETewMS-ANjLTNvfHcEBSYgmOAt3pNR_pIqdsdMJ4e0FL6vv5CTnW5xLchbqgITccDbinMHtcjwvVc6UGQkm8mNnDAh9QgagwUjJc5EZpk9JTwBkQ2H0ywUZtO07Y0xyrbVUPZKeGxtbpJP61Yc3WqLbBP_VYUt3Pm3oPWJDH7GLdntA2tXxg1Z1pEUxo-Mu1bQI7md5d0gbG9xRMkWbuoh0iU3EFkOyydeBFlXlncfg9lfkvLLbFgd_7JNyWpSTh-HiaTafjBdDDzINswwkWF6BYmCslNqpTOa45sgEOrQglDaZ46CMsBwEmrUVa5cbq7ECULJPrn-1HhFXTfSfNu5X_z_Jb5g9X24 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/RAIT65068.2025.11088927 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9798331524807 |
| EISSN | 2994-287X |
| EndPage | 8 |
| ExternalDocumentID | 11088927 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL AAJGR CBEJK IPLJI RIE RIL |
| ID | FETCH-LOGICAL-i93t-44939a1f96098a337c6435eb1e02ecea926784c19682a192e8ba2bc58a7ef9963 |
| IEDL.DBID | RIE |
| IngestDate | Wed Aug 27 02:04:24 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-44939a1f96098a337c6435eb1e02ecea926784c19682a192e8ba2bc58a7ef9963 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_11088927 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-March-6 |
| PublicationDateYYYYMMDD | 2025-03-06 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-March-6 day: 06 |
| PublicationDecade | 2020 |
| PublicationTitle | International Conference on Recent Advances in Information Technology (Online) |
| PublicationTitleAbbrev | RAIT |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003177736 |
| Score | 1.901129 |
| Snippet | Research on emotion classification using Brain-Computer Interface (BCI) systems is an intriguing aspect. Deep learning has recently been used to classify... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Autoencoders Autoencoding Deep learning Electroencephalography Encoding Feature Learning Feature Representation Noise Representation learning Root mean square Scalability Signal analysis Signal reconstruction SparseCoding |
| Title | Sparse Coding Techniques with Deep Neural Network for EEG Auto Encoding: Enhancing Feature Representation Efficiency |
| URI | https://ieeexplore.ieee.org/document/11088927 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwFLSgYoCFryK-8cCaltqO7bBVJQWWqioZulWO8yIqoaRqE34_z25aYGBgihXZUWTLfufnuzMh96B4qLKwF6RZzgORC1wHMyWC3EgLgkEvtam_bEKNRno6jcaNWN1rYQDAk8-g44r-LD8rbe1SZV1HWdcRU7tkVym5FmttEyoYCJVyR5F3jY9md9J_TRCASMfgYmFn0_rXPSo-jAwP__kDR6T9Lcij422oOSY7UJyQgx9egqekelvgHhXooHRVaLLxZl1Rl2qlTwAL6pw4zAc-PPWbIl6lcfxM-3VV0riwvuUjlt6dCQd-xOHDegl04umyjUqpoLG3nXCazTZJhnEyeAmaKxWCecSrQIiIR6aXO5s5bThXFgFJiMs1PDCwYCKGsUtYnJWaGcR-oFPDUhtqoyDHnRE_I62iLOCcUKwjRdRLmZVWcC01IJqwKVcQSggze0Harv9mi7VpxmzTdZd_vL8i-26UPL1LXpNWtazhhuzZz2q-Wt76of4ClWOqzA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG0UTdSLvzD-pgevA9Z2a-eN4BAiEoI7cCNd9y2SmI3A5t9vWwbqwYOnNUu7LG3a7_Xre68IPQCnHk8814mTlDosZXodTDhzUukrYATcWMX2sgk-GonpNBhXYnWrhQEASz6Dpinas_wkV6VJlbUMZV0EhO-iPY8x0l7LtbYpFR0KOTeHkY3KSbM16QwiDUF8w-EiXnPT_tdNKjaQ9I7_-QsnqP4tycPjbbA5RTuQnaGjH26C56h4W-hdKuBubqrgaOPOusIm2YqfABbYeHHID_2w5G-sESsOw2fcKYsch5myLR916d3YcOiPGIRYLgFPLGG20illOLTGE0a1WUdRL4y6fae6VMGZB7RwGAtoIN3UGM0JSSlXGpJ4esGGNgEFMiA6ejGl56UgUqM_ELEksfKE5JDqvRG9QLUsz-ASYV3HZ4EbE-UrRoUvQOMJFVMOng9eoq5Q3fTfbLG2zZhtuu76j_cNdNCPXoez4WD0coMOzYhZspd_i2rFsoQ7tK8-i_lqeW-H_Qulda4T |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Recent+Advances+in+Information+Technology+%28Online%29&rft.atitle=Sparse+Coding+Techniques+with+Deep+Neural+Network+for+EEG+Auto+Encoding%3A+Enhancing+Feature+Representation+Efficiency&rft.au=Rama%2C+M.&rft.au=Nalini%2C+T&rft.au=Khyathi%2C+P&rft.au=Saikiran%2C+N.&rft.date=2025-03-06&rft.pub=IEEE&rft.eissn=2994-287X&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FRAIT65068.2025.11088927&rft.externalDocID=11088927 |