Short-Term Power Load Forecasting based on Multi-Factor Similar Day Selection and Multi-Strategy Improved Whale Optimization Algorithm

Short-term power load is susceptible to the meteorological environment and has obvious cyclical changes. To further improve accuracy, a short-term power load forecasting method based on multi-factor similar day selection and multi-strategy improved whale optimization algorithm (MSI-WOA) is proposed....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 IEEE 3rd International Conference on Power Science and Technology (ICPST) s. 1860 - 1868
Hlavní autoři: Liu, Yutao, Wu, Guihong, Wang, Xuan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 16.05.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Short-term power load is susceptible to the meteorological environment and has obvious cyclical changes. To further improve accuracy, a short-term power load forecasting method based on multi-factor similar day selection and multi-strategy improved whale optimization algorithm (MSI-WOA) is proposed. Firstly, a similar day selection method is established by considering meteorological characteristics and time-cycle factors. Secondly, 16-dimensional input features are constructed, which contain meteorological, time-cycle, and similar day load data. Then, chaotic inverse learning is used to obtain a better initial solution. Nonlinear convergence factors, dynamic inertia weights, adaptive variational perturbations, and simulated annealing strategy are introduced to enhance the global and local search capabilities of the traditional whale optimization algorithm. MSI-WOA is used to optimize the hyperparameters of gated recurrent unit (GRU), such as the number of neuron nodes of two layers, iteration number, and learning rate, to obtain the optimal forecasting model. Finally, after the verification of actual cases and comparative experimental analysis, the proposed method has a better prediction effect.
AbstractList Short-term power load is susceptible to the meteorological environment and has obvious cyclical changes. To further improve accuracy, a short-term power load forecasting method based on multi-factor similar day selection and multi-strategy improved whale optimization algorithm (MSI-WOA) is proposed. Firstly, a similar day selection method is established by considering meteorological characteristics and time-cycle factors. Secondly, 16-dimensional input features are constructed, which contain meteorological, time-cycle, and similar day load data. Then, chaotic inverse learning is used to obtain a better initial solution. Nonlinear convergence factors, dynamic inertia weights, adaptive variational perturbations, and simulated annealing strategy are introduced to enhance the global and local search capabilities of the traditional whale optimization algorithm. MSI-WOA is used to optimize the hyperparameters of gated recurrent unit (GRU), such as the number of neuron nodes of two layers, iteration number, and learning rate, to obtain the optimal forecasting model. Finally, after the verification of actual cases and comparative experimental analysis, the proposed method has a better prediction effect.
Author Liu, Yutao
Wu, Guihong
Wang, Xuan
Author_xml – sequence: 1
  givenname: Yutao
  surname: Liu
  fullname: Liu, Yutao
  email: liuyt_sgcc@126.com
  organization: Power Dispatching Control Center,State Grid Shanghai Municipal Electric Power Company,Shanghai,China
– sequence: 2
  givenname: Guihong
  surname: Wu
  fullname: Wu, Guihong
  email: ghwuee@163.com
  organization: Power Dispatching Control Center,State Grid Shanghai Municipal Electric Power Company,Shanghai,China
– sequence: 3
  givenname: Xuan
  surname: Wang
  fullname: Wang, Xuan
  email: 15810256393@yeah.net
  organization: Power Dispatching Control Center,State Grid Shanghai Municipal Electric Power Company,Shanghai,China
BookMark eNo1kEFOwzAURI0ECyi9AQtfIMWOncReVoVApaJWSiSW1Xf801pK4so1oHAAzk2Bshpp9OYt5oZcDn5AQihnM86Zvl8uNlWdZyxjs5Sl2U-pNBP6gkx1oZUQPONcpfyafFV7H2JSY-jpxn9goCsPlpY-YAPH6IYdNXBES_1AX9666JISmugDrVzvOgj0AUZaYYdNdCcEBnvGqhgg4m6ky_4Q_PvJ8LqHDun6EE_LT_jF593OBxf3_S25aqE74vScE1KXj_XiOVmtn5aL-SpxWsREpgYw5bItpNWtyaXK24wbWWCrBGNCScMaC2ilBINpK3PT2BwsqqyRQkoxIXd_WoeI20NwPYRx-_-O-AY3J2KA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPST65050.2025.11089039
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331511821
EndPage 1868
ExternalDocumentID 11089039
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-42bae214f74d9fb6486f51b47ef8300384b0cdaed44abe2f46bcd6ade85c43443
IEDL.DBID RIE
IngestDate Wed Aug 06 17:55:50 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-42bae214f74d9fb6486f51b47ef8300384b0cdaed44abe2f46bcd6ade85c43443
PageCount 9
ParticipantIDs ieee_primary_11089039
PublicationCentury 2000
PublicationDate 2025-May-16
PublicationDateYYYYMMDD 2025-05-16
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-16
  day: 16
PublicationDecade 2020
PublicationTitle 2025 IEEE 3rd International Conference on Power Science and Technology (ICPST)
PublicationTitleAbbrev ICPST
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9086657
Snippet Short-term power load is susceptible to the meteorological environment and has obvious cyclical changes. To further improve accuracy, a short-term power load...
SourceID ieee
SourceType Publisher
StartPage 1860
SubjectTerms Accuracy
Convergence
Forecasting
gated recurrent unit
Heuristic algorithms
Load forecasting
Load modeling
multi-strategy improved WOA
Optimization
Predictive models
short-term load forecasting
similar day
Simulated annealing
Whale optimization algorithms
Title Short-Term Power Load Forecasting based on Multi-Factor Similar Day Selection and Multi-Strategy Improved Whale Optimization Algorithm
URI https://ieeexplore.ieee.org/document/11089039
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9uePCk4sRvcvCarW3StDnKdCiMWejA3UY-XcG1snXC_gH_bpO0Uzx48BZCSOC9JO-9vPfLD4Bbu4uMMoojyRVDxKgQpXEskCSYMmMw5w1QeJxMJulsxrIWrO6xMFprX3ym-67pc_mqkhv3VDZwJesswKwDOklCG7DWrjonYIOnYZZPrccRBzbui-L-bvgv4hRvN0aH_1zxCPR-EHgw-7Ytx2BPlyfgM19YZxlN7WUKM8duBscVV9Cxa0q-dvXL0BklBasSemAtGnk2HZgXy8JGsPCeb2HuiW-sNiAvVTus_aJ2C5snBjvDy8IaDvhs75NlC9SEd2-v1aqoF8semI4epsNH1PIooILhGpFIcB2FxCREMSMoSamJQ0ESbVLsMoNEBFJxrQjhQkeGUCEV5UqnsdUYIfgUdMuq1GcAanuaI0MTkQpBAh5x584oLHAodJDK-Bz0nAzn781PGfOd-C7-6L8EB05TLhsf0ivQrVcbfQ325UddrFc3Xr9f0-6sBg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86BT2pOPHbHLxma5ukH0eZjg3rLKzgbiNpEldwrWydsH_Av9sk7RQPHryFkA_IS_Je8t7v_QC41btICSUYypiIEFHCRSGlHGUE-5FSmLEaKBwHo1E4mURJA1a3WBgppQ0-kx1TtL58UWYr81XWNSHrkYOjbbBDCfGcGq61ic9xou6wl4xTbXNQR7_8PNrZdPhFnWI1R__gn3MegvYPBg8m39rlCGzJ4hh8jmfaXEapvk5hYvjNYFwyAQ2_ZsaWJoIZGrUkYFlAC61FfcunA8f5PNdvWHjP1nBsqW-0PCArRNOsSVK7hvUngx7hZaZVB3zWN8q8gWrCu7fXcpFXs3kbpP2HtDdADZMCyiNcIeJxJj2XqICISHGfhL6iLieBVCE2vkHCnUwwKQhhXHqK-DwTPhMypFpmhOAT0CrKQp4CKPV59pQf8JBz4jCPGYNGYI5dLp0wo2egbdZw-l7nyphulu_8j_obsDdIn-JpPBw9XoB9IzXjm3f9S9CqFit5BXazjypfLq6trL8A7z2vTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+3rd+International+Conference+on+Power+Science+and+Technology+%28ICPST%29&rft.atitle=Short-Term+Power+Load+Forecasting+based+on+Multi-Factor+Similar+Day+Selection+and+Multi-Strategy+Improved+Whale+Optimization+Algorithm&rft.au=Liu%2C+Yutao&rft.au=Wu%2C+Guihong&rft.au=Wang%2C+Xuan&rft.date=2025-05-16&rft.pub=IEEE&rft.spage=1860&rft.epage=1868&rft_id=info:doi/10.1109%2FICPST65050.2025.11089039&rft.externalDocID=11089039