Proximal Policy Optimization-Based Stability Control Method for Permanent Magnet Direct-Drive Wind Power Generation System

With the increasing proportion of wind power grid connection, the stable control performance of wind turbines is crucial for the safety and stability of the power system. This paper proposes a proximal policy optimization (PPO) algorithm-based adaptive stability control framework for low voltage rid...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 7th International Conference on Power and Energy Technology (ICPET) s. 695 - 699
Hlavní autoři: Wang, Hongxing, Wei, Shenghua, Guo, Jingmei, Guo, Xinran, Ou, Wenjun
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 04.07.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the increasing proportion of wind power grid connection, the stable control performance of wind turbines is crucial for the safety and stability of the power system. This paper proposes a proximal policy optimization (PPO) algorithm-based adaptive stability control framework for low voltage ride-through (LVRT) in permanent magnet direct-drive wind power generation system. Considering phase-locked loop (PLL) impact on system performance, this method real-time adjusts PLL parameters to enhance LVRT. A Markov decision process (MDP) model for LVRT control is established, and reward functions for distinct fault stages are designed. The PPO algorithm solves for the adaptive control strategy. Simulation results validate the method's effectiveness across various faults, demonstrating significant improvements in system LVRT capability, adaptability and stability control capability.
AbstractList With the increasing proportion of wind power grid connection, the stable control performance of wind turbines is crucial for the safety and stability of the power system. This paper proposes a proximal policy optimization (PPO) algorithm-based adaptive stability control framework for low voltage ride-through (LVRT) in permanent magnet direct-drive wind power generation system. Considering phase-locked loop (PLL) impact on system performance, this method real-time adjusts PLL parameters to enhance LVRT. A Markov decision process (MDP) model for LVRT control is established, and reward functions for distinct fault stages are designed. The PPO algorithm solves for the adaptive control strategy. Simulation results validate the method's effectiveness across various faults, demonstrating significant improvements in system LVRT capability, adaptability and stability control capability.
Author Ou, Wenjun
Wei, Shenghua
Guo, Xinran
Wang, Hongxing
Guo, Jingmei
Author_xml – sequence: 1
  givenname: Hongxing
  surname: Wang
  fullname: Wang, Hongxing
  email: hxwang2010@163.com
  organization: China Southern Power Grid Technology Co., Ltd. Guangdong Provincial Key Laboratory of New Technology for Smart Grid,Guangzhou,China
– sequence: 2
  givenname: Shenghua
  surname: Wei
  fullname: Wei, Shenghua
  email: wsh502wsh@163.com
  organization: China Southern Power Grid Technology Co., Ltd.,Guangzhou,China
– sequence: 3
  givenname: Jingmei
  surname: Guo
  fullname: Guo, Jingmei
  email: gjm_gddky@163.com
  organization: China Southern Power Grid Technology Co., Ltd. Guangdong Provincial Key Laboratory of New Technology for Smart Grid,Guangzhou,China
– sequence: 4
  givenname: Xinran
  surname: Guo
  fullname: Guo, Xinran
  email: g18820101803@163.com
  organization: China Southern Power Grid Technology Co., Ltd.,Guangzhou,China
– sequence: 5
  givenname: Wenjun
  surname: Ou
  fullname: Ou, Wenjun
  email: fshkenou@hotmail.com
  organization: China Southern Power Grid Technology Co., Ltd.,Guangzhou,China
BookMark eNo10MtKAzEYBeAIutDaN3CRF5iaTO5LndZasHSgBZclM_NHAzNJSYM6fXqLl9WBs_jgnBt0GWIAhDAlM0qJuV9V9WInJSnNrCSlOJdUEs7lBZoaZTRjVHCupbpGpzrFLz_YHtex9-2IN4fsB3-y2cdQPNojdHibbeN7n0dcxZBT7PEa8nvssIsJ15AGGyBkvLZvATKe-wRtLubJfwB-9aE7y5-Q8BICpB8Wb8djhuEWXTnbH2H6lxO0e1rsqufiZbNcVQ8vhTcsF7ykre0MV4proK2xXDcdaRphtGi4akUrjbKN47R0ikgtHHHcMqlLZrV2gk3Q3S_rAWB_SOexadz_P8K-AXDLXW0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICPET66029.2025.11160446
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331544867
EndPage 699
ExternalDocumentID 11160446
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-421cad947748e1c9a48bd0bb5985b47c5c697abf412f70685f0f4a36823a88f53
IEDL.DBID RIE
IngestDate Wed Oct 01 07:05:04 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-421cad947748e1c9a48bd0bb5985b47c5c697abf412f70685f0f4a36823a88f53
PageCount 5
ParticipantIDs ieee_primary_11160446
PublicationCentury 2000
PublicationDate 2025-July-4
PublicationDateYYYYMMDD 2025-07-04
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-July-4
  day: 04
PublicationDecade 2020
PublicationTitle 2025 7th International Conference on Power and Energy Technology (ICPET)
PublicationTitleAbbrev ICPET
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9139471
Snippet With the increasing proportion of wind power grid connection, the stable control performance of wind turbines is crucial for the safety and stability of the...
SourceID ieee
SourceType Publisher
StartPage 695
SubjectTerms Deep reinforcement learning
Low voltage
low voltage ride through
Optimization
permanent magnet synchronous generator
Permanent magnets
Phase locked loops
phase-locked loop
Power system stability
proximal policy optimization
Simulation
Stability analysis
Wind power generation
Wind turbines
Title Proximal Policy Optimization-Based Stability Control Method for Permanent Magnet Direct-Drive Wind Power Generation System
URI https://ieeexplore.ieee.org/document/11160446
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TgMxELUgoqACRBC3XNA62cNnS0gERcIWkUgX-ZhFkcgGhQ3X12N7ExAFBZ1lWbbkkWfG9ntvELpKOacyKxmhVFDiI15JjGGWuFRysLmi3OpYbEKMRnIyUcWarB65MAAQwWfQCc34l-8WdhWeyrr-XPLwAbmNtoXgDVlrg85JVPeuV_THnCdZIKBkrLMZ_qtwSowbg71_rriP2j8MPFx8x5YDtAXVIfr0Pe-zuX7CjZovvvfnfb4mUpJrH48c9sljhLt-4F4DQsfDWCMa--QUF8ENV35FPNSPFdS4cXjkZul9Hn7w13M_8xsscSNGHabFjaR5G40H_XHvlqxrJ5CZymtCs9Rqp6hP7iSkVmkqjUu8FZRkhgrLLFdCm5KmWSkSLlmZlFTnXGa5lrJk-RFqVYsKjhGmjAkIuvAmB-qc0UwnAsAo4WSqbXKC2mHfps-NOsZ0s2Wnf_Sfod1gnQh5peeoVS9XcIF27Gs9e1leRpt-AQnQpeQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCY6TfSkxhl_y8ErG22BwtW5ZYvb7KGJuy1AqVniOlM7f_31At00Hjx4IyRAwgvvPeD7vgfAdcAY4WFOESExQTbi5UgpqlEWcGZ0JAjT0hebiMdjPpmIZEVW91wYY4wHn5mWa_q__Gyhl-6prG3PJXMfkJtgixIS4pqutcbnYNEedJJuyhgOHQUlpK31gF-lU3zk6O39c8190Pzh4MHkO7ocgA1THIJP2_M-m8snWOv5wnt74ucrKiW6sREpgzZ99IDXD9ipYehw5KtEQ5uewsQ54sKuCEfysTAVrF0eui2t14MP9oJuZ34zJazlqN20sBY1b4K01007fbSqnoBmIqoQCQMtM0FsesdNoIUkXGXY2kFwqkisqWYilionQZjHmHGa45zIiPEwkpznNDoCjWJRmGMACaWxccrwKjIky5SkEsfGKBFnPJAan4Cm27fpc62PMV1v2ekf_Vdgp5-OhtPhYHx3BnadpTwAlpyDRlUuzQXY1q_V7KW89Pb9AtSWqSs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+7th+International+Conference+on+Power+and+Energy+Technology+%28ICPET%29&rft.atitle=Proximal+Policy+Optimization-Based+Stability+Control+Method+for+Permanent+Magnet+Direct-Drive+Wind+Power+Generation+System&rft.au=Wang%2C+Hongxing&rft.au=Wei%2C+Shenghua&rft.au=Guo%2C+Jingmei&rft.au=Guo%2C+Xinran&rft.date=2025-07-04&rft.pub=IEEE&rft.spage=695&rft.epage=699&rft_id=info:doi/10.1109%2FICPET66029.2025.11160446&rft.externalDocID=11160446