Research on Multi-Stage Decision Optimization Based on Monte Carlo Simulation and Deep Q-Network Algorithm

This paper presents a comprehensive study on multi-stage decision optimization leveraging Monte Carlo simulation and Deep Q-Network (DQN) algorithms. We integrate Monte Carlo simulation with sequential sampling, progressively drawing samples and dynamically calculating the log-likelihood ratio to de...

Full description

Saved in:
Bibliographic Details
Published in:2025 International Conference on Electrical Drives, Power Electronics & Engineering (EDPEE) pp. 964 - 971
Main Authors: Chen, Make, Geng, Haitian, Li, Jingran
Format: Conference Proceeding
Language:English
Published: IEEE 26.03.2025
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a comprehensive study on multi-stage decision optimization leveraging Monte Carlo simulation and Deep Q-Network (DQN) algorithms. We integrate Monte Carlo simulation with sequential sampling, progressively drawing samples and dynamically calculating the log-likelihood ratio to determine the inspection plan. Furthermore, the paper delves into the quality control decision-making problem in multi-stage production processes. Utilizing a DQN model coupled with Bayesian optimization for hyperparameter tuning, our approach employs reinforcement learning where an agent interacts with the environment to progressively learn the optimal decision-making strategy. Experimental results demonstrate that the DQN model effectively reduces inspection and disassembly costs. Notably, when the defective rate is low or inspection costs are high, the agent tends to minimize inspection frequencies.
AbstractList This paper presents a comprehensive study on multi-stage decision optimization leveraging Monte Carlo simulation and Deep Q-Network (DQN) algorithms. We integrate Monte Carlo simulation with sequential sampling, progressively drawing samples and dynamically calculating the log-likelihood ratio to determine the inspection plan. Furthermore, the paper delves into the quality control decision-making problem in multi-stage production processes. Utilizing a DQN model coupled with Bayesian optimization for hyperparameter tuning, our approach employs reinforcement learning where an agent interacts with the environment to progressively learn the optimal decision-making strategy. Experimental results demonstrate that the DQN model effectively reduces inspection and disassembly costs. Notably, when the defective rate is low or inspection costs are high, the agent tends to minimize inspection frequencies.
Author Geng, Haitian
Chen, Make
Li, Jingran
Author_xml – sequence: 1
  givenname: Make
  surname: Chen
  fullname: Chen, Make
  email: 95560477@qq.com
  organization: Dongbei University of Finance and Economics,School of Statistics,Dalian,China
– sequence: 2
  givenname: Haitian
  surname: Geng
  fullname: Geng, Haitian
  email: GHT20040622@163.com
  organization: Dongbei University of Finance and Economics,School of Accounting,Dalian,China
– sequence: 3
  givenname: Jingran
  surname: Li
  fullname: Li, Jingran
  email: li-j07@outlook.com
  organization: Dongbei University of Finance and Economics,International Business College,Dalian,China
BookMark eNotUElOwzAUNRIsoPQGIPkCCXYcO_GypGGQCgXaffUTf7eGDJXjCsHpCZTV0xsX74Kcdn2HhFxzFnPO9E05fylLJTOZxglLZMwYz-QJmepM50Jwybng-py8v-GA4Osd7Tv6dGiCi1YBtkjnWLvBjeJyH1zrviH8klsY0PxF-y4gLcA3PV259tAcfejM2MQ9fY2eMXz2_oPOmm3vXdi1l-TMQjPg9B8nZH1XrouHaLG8fyxmi8hpESKhqzyveW5VqrSVsjJgDUptlACok4wJQAXGoFUIWWIxs4nMlUnrmqskrcSEXB1nHSJu9t614L824ydKs1SLH7SqV2U
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/EDPEE65754.2025.00175
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331511319
EndPage 971
ExternalDocumentID 11069049
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-39b88c18f6469f55bdafde59d63aac2703ae6addef6ea72fe7f2586d4cc1624b3
IEDL.DBID RIE
IngestDate Wed Jul 16 07:54:13 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-39b88c18f6469f55bdafde59d63aac2703ae6addef6ea72fe7f2586d4cc1624b3
PageCount 8
ParticipantIDs ieee_primary_11069049
PublicationCentury 2000
PublicationDate 2025-March-26
PublicationDateYYYYMMDD 2025-03-26
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-26
  day: 26
PublicationDecade 2020
PublicationTitle 2025 International Conference on Electrical Drives, Power Electronics & Engineering (EDPEE)
PublicationTitleAbbrev EDPEE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9033636
Snippet This paper presents a comprehensive study on multi-stage decision optimization leveraging Monte Carlo simulation and Deep Q-Network (DQN) algorithms. We...
SourceID ieee
SourceType Publisher
StartPage 964
SubjectTerms Bayes methods
Bayesian optimization
Costs
Decision making
Deep Q-Network algorithm
Heuristic algorithms
Inspection
Monte Carlo methods
Monte Carlo simulation
Optimization
Process control
Production
Quality control
Title Research on Multi-Stage Decision Optimization Based on Monte Carlo Simulation and Deep Q-Network Algorithm
URI https://ieeexplore.ieee.org/document/11069049
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCZu8eBJjTP-DgevuEELLUfduniaM-6w20LhddZs7dJ1_v0C7dSLB28NKSF58Hi8x_fxIXQPARhDhSBMSU5CqoGkmaGEBhqoXdWxlo3YRDSZxPO5nLZkdc-FAQAPPoMH9-nv8k2pd65U1rehyiZzoeygThSJhqzVsnLoQPaT0TRJ3EWCq5UwVyuhDj74SzXFB43x8T-HO0G9H_odnn4HllN0AMUZ-thj5HBZYE-bJfaguAQ8alVy8Iv1_nVLq8RPNjoZ_6t7fgoPVbUq8Vu-btW6sCqM7Qkb_EomDRIcP66WZZXX7-semo2T2fCZtEIJJJdBTQKZWpvSOBM21804T43KDHBpRKCUZtanFQi3j2UCVMQyiDLGY2FCralgYRqco25RFnCBsHVHzYQOB9oEoc3k4pTr2Lisg0fKuu8l6jk7LTbNUxiLvYmu_mi_RkduKhxoi4kb1K2rHdyiQ_1Z59vqzk_gF6OQn3M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCY6TfSkxhl_y8ErblBK26NuXWacdcYddlsovGrN1i618-8X2k69ePDWkBKSB4_He3wfH0LX4IDWVAjCZOASThWQONGUUEcBNavaV0EtNuFFkT-dBuOGrF5xYQCgAp_Bjf2s7vJ1rla2VNYxocokczzYRFsu56xb07UaXg7tBp2wPw5De5VgqyXMVkuoBRD-0k2pwsZg758D7qP2DwEPj79DywHagOwQva9RcjjPcEWcJeao-Aq43-jk4Cfj_4uGWInvTHzS1a_2ASrck8U8xy_potHrwjLTpics8TOJaiw4vp2_5kVavi3aaDIIJ70haaQSSBo4JXGC2FiV-okw2W7iurGWiQY30MKRUjHj1RKE3ckSAdJjCXgJc32huVJUMB47R6iV5RkcI2wcUjGheFdph5tczo9d5Wubd7ieNA58gtrWTrNl_RjGbG2i0z_ar9DOcPI4mo3uo4cztGunxUK4mDhHrbJYwQXaVp9l-lFcVpP5BRs-oro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+International+Conference+on+Electrical+Drives%2C+Power+Electronics+%26+Engineering+%28EDPEE%29&rft.atitle=Research+on+Multi-Stage+Decision+Optimization+Based+on+Monte+Carlo+Simulation+and+Deep+Q-Network+Algorithm&rft.au=Chen%2C+Make&rft.au=Geng%2C+Haitian&rft.au=Li%2C+Jingran&rft.date=2025-03-26&rft.pub=IEEE&rft.spage=964&rft.epage=971&rft_id=info:doi/10.1109%2FEDPEE65754.2025.00175&rft.externalDocID=11069049