GreenK8s: Green-aware Scheduling for Sustainable Kubernetes Cluster Management

With the rise of large-scale data centers and increasing demand for energy-efficient operations, there is a growing need to optimize the use of green energy in cloud computing environments. However, current schedulers focus solely on performance, lacking awareness of energy types and opportunities t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / IEEE International Conference on Cluster Computing s. 1 - 12
Hlavní autoři: Sun, Yifan, Xu, Minxian, Toosi, Adel N.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 02.09.2025
Témata:
ISSN:2168-9253
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the rise of large-scale data centers and increasing demand for energy-efficient operations, there is a growing need to optimize the use of green energy in cloud computing environments. However, current schedulers focus solely on performance, lacking awareness of energy types and opportunities to promote green, low-carbon operations. This paper presents a Green-Aware Scheduling Framework for Kubernetes, named GreenK8s, aimed at minimizing the use of brown energy and maximizing the utilization of renewable energy sources, specifically solar power. Our framework integrates real-time power consumption monitoring with predictive solar energy models to intelligently schedule workloads based on energy availability. The proposed solution incorporates an AI-based solar power prediction model, Pod oversubscription strategies, and a novel scheduler, enabling Kubernetes to dynamically adapt to both the type and availability of green energy. Extensive experiments using the real-world Google Borg dataset and a realistic Kubernetes testbed demonstrate that GreenK8s reduces total energy consumption by up to 39 % and increases the average share of green energy in total consumption to 50.65 %, compared to state-of-the-art baselines. This work provides a promising approach to improve operational efficiency and sustainability in data centers.
AbstractList With the rise of large-scale data centers and increasing demand for energy-efficient operations, there is a growing need to optimize the use of green energy in cloud computing environments. However, current schedulers focus solely on performance, lacking awareness of energy types and opportunities to promote green, low-carbon operations. This paper presents a Green-Aware Scheduling Framework for Kubernetes, named GreenK8s, aimed at minimizing the use of brown energy and maximizing the utilization of renewable energy sources, specifically solar power. Our framework integrates real-time power consumption monitoring with predictive solar energy models to intelligently schedule workloads based on energy availability. The proposed solution incorporates an AI-based solar power prediction model, Pod oversubscription strategies, and a novel scheduler, enabling Kubernetes to dynamically adapt to both the type and availability of green energy. Extensive experiments using the real-world Google Borg dataset and a realistic Kubernetes testbed demonstrate that GreenK8s reduces total energy consumption by up to 39 % and increases the average share of green energy in total consumption to 50.65 %, compared to state-of-the-art baselines. This work provides a promising approach to improve operational efficiency and sustainability in data centers.
Author Xu, Minxian
Toosi, Adel N.
Sun, Yifan
Author_xml – sequence: 1
  givenname: Yifan
  surname: Sun
  fullname: Sun, Yifan
  email: yifan.sun.4@student.unimelb.edu.au
  organization: The University of Melbourne,Computing and Information Systems,Melbourne,Australia
– sequence: 2
  givenname: Minxian
  surname: Xu
  fullname: Xu, Minxian
  email: mx.xu@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen,China
– sequence: 3
  givenname: Adel N.
  surname: Toosi
  fullname: Toosi, Adel N.
  email: adel.toosi@unimelb.edu.au
  organization: The University of Melbourne,Computing and Information Systems,Melbourne,Australia
BookMark eNo1j0tLAzEURqMoWGv_gYvgfmqSO3lcdzLUKq0Ktq5LMr2pI9NUMlPEf2_xsTofZ_HBOWcnaZeIsSspxlIKvK7mr4vl5EUjlGqshNIHLZ0pNR6xEVp0AFKDkOiO2UBJ4wpUGs7Yede9CwEWhBmwp2kmSjPX3fCfVfhPn4kv6jda79smbXjcZb7Yd71vkg8t8dk-UE7UU8er9uAp80ef_Ia2lPoLdhp929Hoj0O2vJssq_ti_jx9qG7nRYPQF2AjQjQiYBBexKClAaqFL-PaYl2SRqFCaWodrRWg0VG0ikwoXS1JagdDdvl72xDR6iM3W5-_Vv_58A0Tw1JU
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CLUSTER59342.2025.11186459
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
Accès UT - IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331530198
EISSN 2168-9253
EndPage 12
ExternalDocumentID 11186459
Genre orig-research
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2024A1515010251,2023B1515130002
  funderid: 10.13039/501100021171
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i93t-37f93f60b9b0a0fb5163ec0a4fd79c4e5902b46c5f7703598ef72e6b48c1e1583
IEDL.DBID RIE
IngestDate Wed Oct 15 14:21:20 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-37f93f60b9b0a0fb5163ec0a4fd79c4e5902b46c5f7703598ef72e6b48c1e1583
PageCount 12
ParticipantIDs ieee_primary_11186459
PublicationCentury 2000
PublicationDate 2025-Sept.-2
PublicationDateYYYYMMDD 2025-09-02
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-Sept.-2
  day: 02
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Conference on Cluster Computing
PublicationTitleAbbrev CLUSTER
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0037306
Score 2.3019288
Snippet With the rise of large-scale data centers and increasing demand for energy-efficient operations, there is a growing need to optimize the use of green energy in...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Adaptation models
Cloud computing
Cluster architectures
Data centers
Energy efficiency
Energy efficient
Green energy
Green products
Kubernetes
Predictive models
Processor scheduling
Scheduling
Solar energy
Sustainable development
Title GreenK8s: Green-aware Scheduling for Sustainable Kubernetes Cluster Management
URI https://ieeexplore.ieee.org/document/11186459
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8MgFJa17LBT96Njv_Gwa9okGo27lpVBSym0g95KnnmywkhHmmz__tQmKzvssJsogqjP96nv-x4hj0msImAiDCRqe0GxgDwA0CyIcw3c4g0QxuvMTuVslq5Wat6Q1T0XBhF98BkOXNH_5edbXbunsqG1y9SJn3RIR0qxJ2u1xy6zW1U0qqJRqIaj6evCAsJEMe74VnEyaHv_yqPi3ci4988BnJL-gZBH5z-u5owcYXFOem1GBtoY6AWZ-TCaSbp7or4UZF9Zibb9zXoURzynFqPSxYE0RSc1YFm411c6eq-dagI9RMT0yXL8vBy9BE3GhGCjWGUPC6OYESEoCLPQQGLBFuow4yaXSnN0Ui3AhU6MlF66D42MUQBPdYRRkrJL0i22BV4RKjDOc2UgSzlya_TAmEGZ81TJTEsO16Tvpmf9sdfEWLczc_NH_S05cYvgo7PiO9KtyhrvybH-rDa78sGv5Dco7Z-Z
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oFPQ0f0z8bQ5eu7VN2jReh2OyWgabsNto0hcUpJNu1X_fJOscHjx4CwmBkOTlfUne9z2A-ygUgaSx73FU5oJiALknpaJeWCjJDN6QsXY6synPsmQ2E-OGrO64MIjogs-wa4vuL79YqNo-lfWMXSZW_GQX9iLGQn9N19ocvNRs1rjRFQ180eunLxMDCSNBmWVchVF30_9XJhXnSAbtfw7hCDpbSh4Z_zibY9jB8gTam5wMpDHRU8hcIM0oWT4QV_Lyr7xC0_5qfIqlnhODUslkS5sio1piVdr3V9J_r61uAtnGxHRgOnic9odekzPBexN0ZY4LLaiOfSmkn_taRgZuofJzpgsuFEMr1iJZrCLNuRPvQ81DjCVLVIBBlNAzaJWLEs-BxBgWhdAyTxgyY_aSUo28YIngueJMXkDHTs_8Y62KMd_MzOUf9XdwMJw-p_P0KRtdwaFdEBerFV5Da1XVeAP76nP1tqxu3ap-A6TlouA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Cluster+Computing&rft.atitle=GreenK8s%3A+Green-aware+Scheduling+for+Sustainable+Kubernetes+Cluster+Management&rft.au=Sun%2C+Yifan&rft.au=Xu%2C+Minxian&rft.au=Toosi%2C+Adel+N.&rft.date=2025-09-02&rft.pub=IEEE&rft.eissn=2168-9253&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1109%2FCLUSTER59342.2025.11186459&rft.externalDocID=11186459