Research on the Cultural Media Content Generation Model Driven by Natural Language Processing Technology

This study focuses on the application of natural language processing technology in the field of cultural media content generation, and is committed to building an efficient and targeted content generation model. A cultural media content generation algorithm based on sentiment fusion and semantic exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2025 IEEE 3rd International Conference on Image Processing and Computer Applications (ICIPCA) S. 1808 - 1812
1. Verfasser: Zhao, Zhirong
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 28.06.2025
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study focuses on the application of natural language processing technology in the field of cultural media content generation, and is committed to building an efficient and targeted content generation model. A cultural media content generation algorithm based on sentiment fusion and semantic expansion (ESACG) is proposed. With the help of precise sentiment analysis technology, the algorithm converts the sentiment tendency of the input text into the key elements to guide content generation, and through a unique semantic expansion method, uses knowledge graphs and pre-trained language models to mine rich semantic information to enrich the content. The experiment uses a large-scale cultural media field text dataset collected from multiple channels, and compares it with mainstream models such as traditional seq2seq models and fine-tuning models based on GPT-3. The experimental results show that in terms of the BLEU value evaluation index, the model reaches 0.68, which is 25% higher than the traditional seq2seq model, the ROUGE-1 index reaches 0.82, and the ROUGE-2 index reaches 0.60, which are significantly better than the comparison model. In terms of the emotional fit index for the cultural media field, this model reaches 85%, and the cultural element richness index is 30% higher than the comparison model.
AbstractList This study focuses on the application of natural language processing technology in the field of cultural media content generation, and is committed to building an efficient and targeted content generation model. A cultural media content generation algorithm based on sentiment fusion and semantic expansion (ESACG) is proposed. With the help of precise sentiment analysis technology, the algorithm converts the sentiment tendency of the input text into the key elements to guide content generation, and through a unique semantic expansion method, uses knowledge graphs and pre-trained language models to mine rich semantic information to enrich the content. The experiment uses a large-scale cultural media field text dataset collected from multiple channels, and compares it with mainstream models such as traditional seq2seq models and fine-tuning models based on GPT-3. The experimental results show that in terms of the BLEU value evaluation index, the model reaches 0.68, which is 25% higher than the traditional seq2seq model, the ROUGE-1 index reaches 0.82, and the ROUGE-2 index reaches 0.60, which are significantly better than the comparison model. In terms of the emotional fit index for the cultural media field, this model reaches 85%, and the cultural element richness index is 30% higher than the comparison model.
Author Zhao, Zhirong
Author_xml – sequence: 1
  givenname: Zhirong
  surname: Zhao
  fullname: Zhao, Zhirong
  email: 784425362@qq.com
  organization: Changchun University of Architecture and Civil Engineering,Changchun,Jilin,China
BookMark eNo1j9FKwzAYhSPohc69gRfxATqTP2mbXo6qs9DpkN6PtP3TBmoiaSrs7R1Mrw4cvvPBuSPXzjsk5JGzDeeseKrK6lBuszST6QYYpOeWC5Xn-RVZF3mhhOApgJL8loyfOKMO3Ui9o3FEWi5TXIKe6B57q2npXUQX6Q4dBh3tmdr7Hif6HOwPOtqe6Lu-DGrthkUPSA_BdzjP1g20wW50fvLD6Z7cGD3NuP7LFWleX5ryLak_dlW5rRNbiJiAyZBL7GTWcl4IACOkQVBKtojKQJsqxkWXM6ZYynUGGgQTTKvWtLLPQKzIw0VrEfH4HeyXDqfj_3_xC9cdVj0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIPCA65645.2025.11138777
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331522841
EndPage 1812
ExternalDocumentID 11138777
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-2f6e14ec46b119322f34fe2884bee8f2b58013c7008051a62a23030a8bfb4d623
IEDL.DBID RIE
IngestDate Wed Sep 10 07:40:45 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-2f6e14ec46b119322f34fe2884bee8f2b58013c7008051a62a23030a8bfb4d623
PageCount 5
ParticipantIDs ieee_primary_11138777
PublicationCentury 2000
PublicationDate 2025-June-28
PublicationDateYYYYMMDD 2025-06-28
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-28
  day: 28
PublicationDecade 2020
PublicationTitle 2025 IEEE 3rd International Conference on Image Processing and Computer Applications (ICIPCA)
PublicationTitleAbbrev ICIPCA
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9134765
Snippet This study focuses on the application of natural language processing technology in the field of cultural media content generation, and is committed to building...
SourceID ieee
SourceType Publisher
StartPage 1808
SubjectTerms Buildings
Computational modeling
Computer applications
content generation
Cultural differences
cultural media
emotional fusion
Image processing
Indexes
Knowledge graphs
Media
Natural language processing
semantic expansion
Semantics
Sentiment analysis
Title Research on the Cultural Media Content Generation Model Driven by Natural Language Processing Technology
URI https://ieeexplore.ieee.org/document/11138777
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH64IeJJxYm_eYLXbm3SpulRqsPBGDsM2W0kbYID6WR2gv-9eWnn8ODBWygpgRfI9_Lyvu8DuOdK2dByHSQOvoLYFCrQJZkIGB0msrBZ4euQL-N0MpHzeTZtyeqeC2OM8c1npk9D_5ZfrooNlcoGZItO-nUd6KSpaMhaB3DX6mYORvlomj8I0kdxFz-W9LfzfzmneOAYHv1zyWPo7Sh4OP0BlxPYM9UpvG775HBVocvcMG91M5DeWxR6qamqxkZLmkKO5HX2ho9rOtRQf-FENT-M2zoltkwBtwjuyuw9mA2fZvlz0FolBMuM1wGzwkQu0LHQEWVkzPLYGiZlrI2RlunEAREvUsoPk0gJptzNg4dKaqvj0mVAZ9CtVpU5B7Shg7UkVoopEUehUiJjLC3JjZqsxfgF9ChKi_dGDGOxDdDlH9-v4JD2grqrmLyGbr3emBvYLz7r5cf61m_hN0I7nqY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oFPWk4sTfRvDarc2PLj1KdWxYyw5DdhtJm-BgdDI7wf_evLZzePDgLQRC4AXyvby87_sA7plS1rdMe8LBl8dNpjydo4mA0b6QmY2yqg75mvTSVE4m0aghq1dcGGNM1XxmOjis_vLzRbbCUlkXbdFRv24bdgTn1K_pWntw1yhndofxcBQ_hKiQ4p5-VHTWK355p1TQ0T_856ZH0N6Q8MjoB16OYcsUJ_C27pQji4K43I3EjXIGwR8XRSqxqaIktZo0Bp2g29mcPC7xWiP6i6SqXpA0lUrScAXcJmRTaG_DuP80jgdeY5bgzSJWetSGJnCh5qEOMCejlnFrqJRcGyMt1cJBEct6mCGKQIVUubcH85XUVvPc5UCn0CoWhTkDYn0HbIIrRVXIA1-pMKK0l6MfNZqLsXNoY5Sm77UcxnQdoIs_5m9hfzB-SabJMH2-hAM8F-y1ovIKWuVyZa5hN_ssZx_Lm-o4vwGxVqHt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+3rd+International+Conference+on+Image+Processing+and+Computer+Applications+%28ICIPCA%29&rft.atitle=Research+on+the+Cultural+Media+Content+Generation+Model+Driven+by+Natural+Language+Processing+Technology&rft.au=Zhao%2C+Zhirong&rft.date=2025-06-28&rft.pub=IEEE&rft.spage=1808&rft.epage=1812&rft_id=info:doi/10.1109%2FICIPCA65645.2025.11138777&rft.externalDocID=11138777