Brain Tumor Classification for MRI-CT Fused Images using NAS-Optimized Bio-Inspired PSO Algorithm

Healthcare sector plays a vital role in industry contributing for the tremendous success of deep learning algorithms in the field of image processing in recent years. Medical image processing requires high accuracy in data prediction and classification that, brings up huge benefits to the healthcare...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2025 9th International Conference on Inventive Systems and Control (ICISC) s. 885 - 891
Hlavní autoři: B, Ajith Jerom, S, Sarathambekai
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 12.08.2025
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Healthcare sector plays a vital role in industry contributing for the tremendous success of deep learning algorithms in the field of image processing in recent years. Medical image processing requires high accuracy in data prediction and classification that, brings up huge benefits to the healthcare. It has been largely affected by some rapid progress in particular image detection, image recognition, image segmentation, and computer aided diagnosis. Medical imaging is an essential for providing diagnostic information through different modalities. In this paper, MRI-CT brain tumor fused image is classified using NAS-driven Bio-Inspired PSO algorithm. Brain tumor classification necessitates highresolution imaging to guarantee correct localization and diagnosis. Scans of single images contains lack of ability to visualize tumor boundaries and areas of significance. Hence, to overcome this problem there is a need for an automated system for tumor classification without losing its essential features. Wavelet transform fusion is used to fuse the MRI and CT images of brain which, decomposes them into different frequency components and then selectively merge those data to form a single enhanced fused image. The EfficientNetB0, is a lightweight and accurate CNN, used for feature extraction due to efficient compound scaling and strong representation. The ICHOA algorithm is inspired by chimpanzees social behaviour designed for feature selection. Also, the proposed NAS is an automated method to identify optimal neural network architectures without manual intervention. By, exploring a defined search space, NAS enables, discovery of high-performing and accurate classification of tumors. Bio-Inspired PSO optimization reduces trail-and-error and computational burden.
AbstractList Healthcare sector plays a vital role in industry contributing for the tremendous success of deep learning algorithms in the field of image processing in recent years. Medical image processing requires high accuracy in data prediction and classification that, brings up huge benefits to the healthcare. It has been largely affected by some rapid progress in particular image detection, image recognition, image segmentation, and computer aided diagnosis. Medical imaging is an essential for providing diagnostic information through different modalities. In this paper, MRI-CT brain tumor fused image is classified using NAS-driven Bio-Inspired PSO algorithm. Brain tumor classification necessitates highresolution imaging to guarantee correct localization and diagnosis. Scans of single images contains lack of ability to visualize tumor boundaries and areas of significance. Hence, to overcome this problem there is a need for an automated system for tumor classification without losing its essential features. Wavelet transform fusion is used to fuse the MRI and CT images of brain which, decomposes them into different frequency components and then selectively merge those data to form a single enhanced fused image. The EfficientNetB0, is a lightweight and accurate CNN, used for feature extraction due to efficient compound scaling and strong representation. The ICHOA algorithm is inspired by chimpanzees social behaviour designed for feature selection. Also, the proposed NAS is an automated method to identify optimal neural network architectures without manual intervention. By, exploring a defined search space, NAS enables, discovery of high-performing and accurate classification of tumors. Bio-Inspired PSO optimization reduces trail-and-error and computational burden.
Author B, Ajith Jerom
S, Sarathambekai
Author_xml – sequence: 1
  givenname: Ajith Jerom
  surname: B
  fullname: B, Ajith Jerom
  email: ajithcys@psnacet.edu.in
  organization: PSNA College of Engineering and Technology,Department of CSE (Cyber Security),Dindigul,India
– sequence: 2
  givenname: Sarathambekai
  surname: S
  fullname: S, Sarathambekai
  email: ssi.it@psgtech.ac.in
  organization: PSG College of Technology,Department of Information Technology,Coimbatore,India
BookMark eNo1j81OhDAUhWuiCx3nDVz0BRhpS2m7ZIijJKMYYT-5dFq8CT8TCgt9eknU1cn5vuQk545cD-PgCKEs3jEWm8ciL6o8lTphOx5zuUKmNTfiimyNMloIJhlPlLolsJ8AB1ov_TjRvIMQ0KOFGceB-hW9fhRRXtPDEtyZFj20LtAl4NDSt6yKysuMPX6vao9jVAzhgtNa3quSZl07Tjh_9vfkxkMX3PYvN6Q6PNX5S3Qsn4s8O0ZoxBxxy60AcOAtcK2l5qmFNEkawXhzTpWBWLqkAW-cUyq22qeN5Q4aIWTstdiQh99VdM6dLhP2MH2d_n-LH_VuU0E
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICISC65841.2025.11188293
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331512477
EndPage 891
ExternalDocumentID 11188293
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-2c2c3aaeafca2885826ca644b312bd679a05e4baf9ee770c8f6bc2eab3350f83
IEDL.DBID RIE
IngestDate Sat Oct 25 03:12:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-2c2c3aaeafca2885826ca644b312bd679a05e4baf9ee770c8f6bc2eab3350f83
PageCount 7
ParticipantIDs ieee_primary_11188293
PublicationCentury 2000
PublicationDate 2025-Aug.-12
PublicationDateYYYYMMDD 2025-08-12
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-Aug.-12
  day: 12
PublicationDecade 2020
PublicationTitle 2025 9th International Conference on Inventive Systems and Control (ICISC)
PublicationTitleAbbrev ICISC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9181855
Snippet Healthcare sector plays a vital role in industry contributing for the tremendous success of deep learning algorithms in the field of image processing in recent...
SourceID ieee
SourceType Publisher
StartPage 885
SubjectTerms Accuracy
Biological system modeling
Biomedical imaging
Brain tumors
Classification algorithms
Deep learning
EfficientB0
Image Fusion
Improved Chimp Optimization Algorithm (ICHOA)
Neural architecture search
Neural Architecture Search (NAS)
Optimization
Particle swarm optimization
Particle Swarm Optimization (PSO)
Wavelet Transform Fusion
Wavelet transforms
Title Brain Tumor Classification for MRI-CT Fused Images using NAS-Optimized Bio-Inspired PSO Algorithm
URI https://ieeexplore.ieee.org/document/11188293
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYoYmACRBFveWB1m9pNHI9tREUG2op06FY5zrlEIglKEwZ-PbbbghgY2PySLJ1l33cvfwg9KM4gTEOfSJFxYuksiEEhQJSW6VAZ_RJQ7cgm-HQaLpdivitWd7UwAOCSz6Bnmy6Wn1Wqta6yvrmXBhAK1kEdzvm2WGufneOJfhzFSWQ1qrX7qN_bL_9FnOL0xuTknzueou5PBR6ef-uWM3QA5TmSY8vngBdtUdXYsVnaPB8nWmywJ35-iUm0wJN2AxmOC_NSbLDNa1_j6SghM_M4FPmnmRrnFYlLG2I3nXkyw6O3dVXnzWvRRcnkcRE9kR1FAskFawhVVDEpQWolaRj6xlZQ0iCclA1omgVcSM-HYSq1AODcU6EOUkVBpoz5ng7ZBTosqxIujQwFtdhD0sxYWDKQwhg6AExbxGEwmrhCXSud1fv2D4zVXjDXf4zfoGN7Btb7OqC36LCpW7hDR-qjyTf1vTu5L81ImwE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFLagIMEEiCJuPLC6h53LYxtRNaJNK5KhW-U4LyUSSVCaMPDrsdMWxMDA5kOWpWfZ73uXP4Qepc3AiRyTCB7bRNNZEIVCgMhERIZU-sWiSUM2Yfu-s1jw-bZYvamFAYAm-Qw6utnE8uNC1tpV1lX3UgFCzvbRgWkYtL8p19rl5_R413O9wNU6VVt-1OzsFvyiTmk0x-jkn3ueovZPDR6ef2uXM7QH-TkSQ83ogMM6K0rc8FnqTJ9GuFihTzx98Ygb4lG9hhh7mXor1lhntq-wPwjITD0PWfqppoZpQbxcB9lVZx7M8OBtVZRp9Zq1UTB6Ct0x2ZIkkJSzilBJJRMCRCIFdRxTWQtSKIwTsT6NYsvmomeCEYmEA9h2TzqJFUkKImLM7CUOu0CtvMjhUsmQU40-BI2VjSUswZWpA8ASjTkUSuNXqK2ls3zf_IKx3Anm-o_xB3Q0DqeT5cTzn2_QsT4P7Yvt01vUqsoa7tCh_KjSdXnfnOIXDO-eSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+9th+International+Conference+on+Inventive+Systems+and+Control+%28ICISC%29&rft.atitle=Brain+Tumor+Classification+for+MRI-CT+Fused+Images+using+NAS-Optimized+Bio-Inspired+PSO+Algorithm&rft.au=B%2C+Ajith+Jerom&rft.au=S%2C+Sarathambekai&rft.date=2025-08-12&rft.pub=IEEE&rft.spage=885&rft.epage=891&rft_id=info:doi/10.1109%2FICISC65841.2025.11188293&rft.externalDocID=11188293