Enhancing Liver Cirrhosis Prognosis: A Machine Learning and Explainable AI Approach

Liver cirrhosis is a final stage of many chronic liver diseases, accompanying with higher morbidity and mortality rates reduce quality of life. The aim of this study is to examine the predictive potential of predictive analytics for survival in patients diagnosed with liver cirrhosis using a large c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 Third International Conference on Artificial Intelligence, Computational Electronics and Communication System (AICECS) S. 1 - 5
Hauptverfasser: Jeyabalan, Jeyalakshmi, Karthikeyan
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 12.12.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Liver cirrhosis is a final stage of many chronic liver diseases, accompanying with higher morbidity and mortality rates reduce quality of life. The aim of this study is to examine the predictive potential of predictive analytics for survival in patients diagnosed with liver cirrhosis using a large clinical dataset. The employ advanced machine learning tools, like XGBoost, LightGBM and CatBoost to predict survival rates and classify patients in different prognostic subgroups. The above data preprocessing strategy and ensemble model with soft voting and weighted XGBoost work well toward the performance. It achieves of 0.4264 Logarithmic loss and an F1 score of 0.826 over 10 cross-validation splits on a Tensorflow dataset compared to the state-of-the-art genome analysis tools, These values of SHapley Additive exPlanations (SHAP) are even more important to understand the features used in model decisions. These results reflect the promise of machine learning to enable personalized medicine and clinical decision-making in hepatology by improving upon current prognostic predictions.
AbstractList Liver cirrhosis is a final stage of many chronic liver diseases, accompanying with higher morbidity and mortality rates reduce quality of life. The aim of this study is to examine the predictive potential of predictive analytics for survival in patients diagnosed with liver cirrhosis using a large clinical dataset. The employ advanced machine learning tools, like XGBoost, LightGBM and CatBoost to predict survival rates and classify patients in different prognostic subgroups. The above data preprocessing strategy and ensemble model with soft voting and weighted XGBoost work well toward the performance. It achieves of 0.4264 Logarithmic loss and an F1 score of 0.826 over 10 cross-validation splits on a Tensorflow dataset compared to the state-of-the-art genome analysis tools, These values of SHapley Additive exPlanations (SHAP) are even more important to understand the features used in model decisions. These results reflect the promise of machine learning to enable personalized medicine and clinical decision-making in hepatology by improving upon current prognostic predictions.
Author Karthikeyan
Jeyabalan, Jeyalakshmi
Author_xml – sequence: 1
  givenname: Jeyalakshmi
  surname: Jeyabalan
  fullname: Jeyabalan, Jeyalakshmi
  email: j_jeyalakshmi@ch.amrita.edu
  organization: Amrita School of Computing Amrita Vishwa Vidyapeetham,Dept. of Computer Science Engineering,Chennai,India
– sequence: 2
  surname: Karthikeyan
  fullname: Karthikeyan
  email: rippleskarthi@gmail.com
  organization: Amrita School of Computing Amrita Vishwa Vidyapeetham,Dept. of Computer Science Engineering,Chennai,India
BookMark eNo1j81Kw0AUhUfQhda-gYvxARLnvxl3IUQbiCi0-3Izc9MMxEmYiOjb26Kuzsfh48C5IZdxikjIPWc558w-lE1VVzsjpVa5YELlp1IbodkFWduNLaRm0nKh1DXZ1XGA6EI80jZ8YqJVSGmYlrDQtzQd45keaUlfwA0hIm0RUjzbED2tv-YRQoRuRFo2tJznNJ28W3LVw7jg-i9XZP9U76tt1r4-N1XZZsHKj0ww7DvbWXDMQIHgtYTCWSG4N9wBaGe9cF4AKMUVsz3vre_4xhulpTZOrsjd72xAxMOcwjuk78P_VfkD5ZdPAA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AICECS63354.2024.10956250
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350391244
EndPage 5
ExternalDocumentID 10956250
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-20efb9b9ac06a8ead53a8c9221d61caa5c9d2cd2aa441409f1f9db17d645356c3
IEDL.DBID RIE
IngestDate Wed Apr 23 05:41:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-20efb9b9ac06a8ead53a8c9221d61caa5c9d2cd2aa441409f1f9db17d645356c3
PageCount 5
ParticipantIDs ieee_primary_10956250
PublicationCentury 2000
PublicationDate 2024-Dec.-12
PublicationDateYYYYMMDD 2024-12-12
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-12
  day: 12
PublicationDecade 2020
PublicationTitle 2024 Third International Conference on Artificial Intelligence, Computational Electronics and Communication System (AICECS)
PublicationTitleAbbrev AICECS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8920823
Snippet Liver cirrhosis is a final stage of many chronic liver diseases, accompanying with higher morbidity and mortality rates reduce quality of life. The aim of this...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Decision making
Explainable AI
Genomics
Gradient Boosting Algorithms
Liver Cirrhosis
Liver diseases
Machine Learning
Machine learning algorithms
Mortality
Precision medicine
Prediction algorithms
Predictive analytics
Prognostics and health management
Survival Prediction
Title Enhancing Liver Cirrhosis Prognosis: A Machine Learning and Explainable AI Approach
URI https://ieeexplore.ieee.org/document/10956250
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA46RDypOPGbCF4716RJGm-lbDjQMdgOu418vN166aTd_P0mWad48OAthEDgTcL7ked5XoSeGHUxMPR1BEJBlKSJjbQn-DhPRRQrnE8TNjSbEONxOp_LSUtWD1wYAAjgM-j5YfjLt2uz9aUy98Klj9ddhn4ohNiRtY7RY6ub-ZyN8kE-5ZSGYglJevv1vzqnBMcxPP3nlmeo-0PBw5Nv53KODqC6QNNBtfL6GNUSv3k8Bc7Lul6tm7Lxaz1krmxecIbfA0IScCueusSqstij7VqqFM5GOGvFxLtoNhzM8teo7YoQlZJu3K2GQkstlelzlbp7wKhKjSQktjw2SjEjLTGWKOUCHZe8FXEhrY6F5QmjjBt6iTrVuoIrhF2mAVZoaqU0iZB9CVJaqlWiWKKB82vU9QZZfOx0LxZ7W9z8MX-LTrzZPdgjJneos6m3cI-OzOembOqHcFpfWRqXSg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MGvWkRoxva-J1ke1jd-tts4FABEICB26kjwH2sphd8PfblkXjwYO3pmnTpJ1mZtrv-wahF05tDAxtFUAsIWAJM4FyBB_rqYjkC-vTYuOLTcSjUTKbiXFNVvdcGADw4DNouab_yzdrvXVPZfaGCxev2wz9kDNGwh1d6xg918qZr2k_62STiFL_XEJYaz_jV-0U7zq6Z_9c9Bw1f0h4ePztXi7QARSXaNIpVk4ho1jigUNU4Cwvy9W6yis31oHm8uoNp3joMZKAa_nUJZaFwQ5vV5OlcNrHaS0n3kTTbmea9YK6LkKQC7qxdg0LJZSQuh3JxFoCpzLRgpDQRKGWkmthiDZEShvq2PRtES6EUWFsIsYpjzS9Qo1iXcA1wjbXABMraoTQLBZtAUIYqiSTnCmIohvUdBsy_9gpX8z3e3H7R_8TOulNh4P5oD96v0On7ggc9CMk96ixKbfwgI705yavykd_cl9nGJqR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+Third+International+Conference+on+Artificial+Intelligence%2C+Computational+Electronics+and+Communication+System+%28AICECS%29&rft.atitle=Enhancing+Liver+Cirrhosis+Prognosis%3A+A+Machine+Learning+and+Explainable+AI+Approach&rft.au=Jeyabalan%2C+Jeyalakshmi&rft.au=Karthikeyan&rft.date=2024-12-12&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FAICECS63354.2024.10956250&rft.externalDocID=10956250