Enhancing Liver Cirrhosis Prognosis: A Machine Learning and Explainable AI Approach
Liver cirrhosis is a final stage of many chronic liver diseases, accompanying with higher morbidity and mortality rates reduce quality of life. The aim of this study is to examine the predictive potential of predictive analytics for survival in patients diagnosed with liver cirrhosis using a large c...
Gespeichert in:
| Veröffentlicht in: | 2024 Third International Conference on Artificial Intelligence, Computational Electronics and Communication System (AICECS) S. 1 - 5 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
12.12.2024
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Liver cirrhosis is a final stage of many chronic liver diseases, accompanying with higher morbidity and mortality rates reduce quality of life. The aim of this study is to examine the predictive potential of predictive analytics for survival in patients diagnosed with liver cirrhosis using a large clinical dataset. The employ advanced machine learning tools, like XGBoost, LightGBM and CatBoost to predict survival rates and classify patients in different prognostic subgroups. The above data preprocessing strategy and ensemble model with soft voting and weighted XGBoost work well toward the performance. It achieves of 0.4264 Logarithmic loss and an F1 score of 0.826 over 10 cross-validation splits on a Tensorflow dataset compared to the state-of-the-art genome analysis tools, These values of SHapley Additive exPlanations (SHAP) are even more important to understand the features used in model decisions. These results reflect the promise of machine learning to enable personalized medicine and clinical decision-making in hepatology by improving upon current prognostic predictions. |
|---|---|
| AbstractList | Liver cirrhosis is a final stage of many chronic liver diseases, accompanying with higher morbidity and mortality rates reduce quality of life. The aim of this study is to examine the predictive potential of predictive analytics for survival in patients diagnosed with liver cirrhosis using a large clinical dataset. The employ advanced machine learning tools, like XGBoost, LightGBM and CatBoost to predict survival rates and classify patients in different prognostic subgroups. The above data preprocessing strategy and ensemble model with soft voting and weighted XGBoost work well toward the performance. It achieves of 0.4264 Logarithmic loss and an F1 score of 0.826 over 10 cross-validation splits on a Tensorflow dataset compared to the state-of-the-art genome analysis tools, These values of SHapley Additive exPlanations (SHAP) are even more important to understand the features used in model decisions. These results reflect the promise of machine learning to enable personalized medicine and clinical decision-making in hepatology by improving upon current prognostic predictions. |
| Author | Karthikeyan Jeyabalan, Jeyalakshmi |
| Author_xml | – sequence: 1 givenname: Jeyalakshmi surname: Jeyabalan fullname: Jeyabalan, Jeyalakshmi email: j_jeyalakshmi@ch.amrita.edu organization: Amrita School of Computing Amrita Vishwa Vidyapeetham,Dept. of Computer Science Engineering,Chennai,India – sequence: 2 surname: Karthikeyan fullname: Karthikeyan email: rippleskarthi@gmail.com organization: Amrita School of Computing Amrita Vishwa Vidyapeetham,Dept. of Computer Science Engineering,Chennai,India |
| BookMark | eNo1j81Kw0AUhUfQhda-gYvxARLnvxl3IUQbiCi0-3Izc9MMxEmYiOjb26Kuzsfh48C5IZdxikjIPWc558w-lE1VVzsjpVa5YELlp1IbodkFWduNLaRm0nKh1DXZ1XGA6EI80jZ8YqJVSGmYlrDQtzQd45keaUlfwA0hIm0RUjzbED2tv-YRQoRuRFo2tJznNJ28W3LVw7jg-i9XZP9U76tt1r4-N1XZZsHKj0ww7DvbWXDMQIHgtYTCWSG4N9wBaGe9cF4AKMUVsz3vre_4xhulpTZOrsjd72xAxMOcwjuk78P_VfkD5ZdPAA |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/AICECS63354.2024.10956250 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEL url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350391244 |
| EndPage | 5 |
| ExternalDocumentID | 10956250 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-20efb9b9ac06a8ead53a8c9221d61caa5c9d2cd2aa441409f1f9db17d645356c3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Apr 23 05:41:10 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-20efb9b9ac06a8ead53a8c9221d61caa5c9d2cd2aa441409f1f9db17d645356c3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10956250 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Dec.-12 |
| PublicationDateYYYYMMDD | 2024-12-12 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec.-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 Third International Conference on Artificial Intelligence, Computational Electronics and Communication System (AICECS) |
| PublicationTitleAbbrev | AICECS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8920823 |
| Snippet | Liver cirrhosis is a final stage of many chronic liver diseases, accompanying with higher morbidity and mortality rates reduce quality of life. The aim of this... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Decision making Explainable AI Genomics Gradient Boosting Algorithms Liver Cirrhosis Liver diseases Machine Learning Machine learning algorithms Mortality Precision medicine Prediction algorithms Predictive analytics Prognostics and health management Survival Prediction |
| Title | Enhancing Liver Cirrhosis Prognosis: A Machine Learning and Explainable AI Approach |
| URI | https://ieeexplore.ieee.org/document/10956250 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8MwGA46RDypOPGbCF4716RJGm-lbDjQMdgOu418vN166aTd_P0mWad48OAthEDgTcL7ked5XoSeGHUxMPR1BEJBlKSJjbQn-DhPRRQrnE8TNjSbEONxOp_LSUtWD1wYAAjgM-j5YfjLt2uz9aUy98Klj9ddhn4ohNiRtY7RY6ub-ZyN8kE-5ZSGYglJevv1vzqnBMcxPP3nlmeo-0PBw5Nv53KODqC6QNNBtfL6GNUSv3k8Bc7Lul6tm7Lxaz1krmxecIbfA0IScCueusSqstij7VqqFM5GOGvFxLtoNhzM8teo7YoQlZJu3K2GQkstlelzlbp7wKhKjSQktjw2SjEjLTGWKOUCHZe8FXEhrY6F5QmjjBt6iTrVuoIrhF2mAVZoaqU0iZB9CVJaqlWiWKKB82vU9QZZfOx0LxZ7W9z8MX-LTrzZPdgjJneos6m3cI-OzOembOqHcFpfWRqXSg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4MGvWkRoxva-J1ke1jd-tts4FABEICB26kjwH2sphd8PfblkXjwYO3pmnTpJ1mZtrv-wahF05tDAxtFUAsIWAJM4FyBB_rqYjkC-vTYuOLTcSjUTKbiXFNVvdcGADw4DNouab_yzdrvXVPZfaGCxev2wz9kDNGwh1d6xg918qZr2k_62STiFL_XEJYaz_jV-0U7zq6Z_9c9Bw1f0h4ePztXi7QARSXaNIpVk4ho1jigUNU4Cwvy9W6yis31oHm8uoNp3joMZKAa_nUJZaFwQ5vV5OlcNrHaS0n3kTTbmea9YK6LkKQC7qxdg0LJZSQuh3JxFoCpzLRgpDQRKGWkmthiDZEShvq2PRtES6EUWFsIsYpjzS9Qo1iXcA1wjbXABMraoTQLBZtAUIYqiSTnCmIohvUdBsy_9gpX8z3e3H7R_8TOulNh4P5oD96v0On7ggc9CMk96ixKbfwgI705yavykd_cl9nGJqR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+Third+International+Conference+on+Artificial+Intelligence%2C+Computational+Electronics+and+Communication+System+%28AICECS%29&rft.atitle=Enhancing+Liver+Cirrhosis+Prognosis%3A+A+Machine+Learning+and+Explainable+AI+Approach&rft.au=Jeyabalan%2C+Jeyalakshmi&rft.au=Karthikeyan&rft.date=2024-12-12&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FAICECS63354.2024.10956250&rft.externalDocID=10956250 |