Adaptive Normalized Min-Sum Decoding Algorithm For LDPC Codes in Flash Memory
For globally coupled low density parity check (GCLDPC) codes, the normalized Min-Sum (NMS) algorithm is a widely-used decoding algorithm but suffers from the degraded performance and the slow convergence speed. To address this issue, in this paper, by analyzing the relation between the bit error rat...
Uloženo v:
| Vydáno v: | 2025 IEEE/CIC International Conference on Communications in China (ICCC) s. 1 - 6 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
10.08.2025
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | For globally coupled low density parity check (GCLDPC) codes, the normalized Min-Sum (NMS) algorithm is a widely-used decoding algorithm but suffers from the degraded performance and the slow convergence speed. To address this issue, in this paper, by analyzing the relation between the bit error ratio (BER) and the degree of polarization of log-likelihood ratio (LLR) information, we propose an adaptive NMS decoding algorithm. In particular, the normalized factor is dynamically adjusted based on the average LLR information in the initial and the current iterations. Besides, the two-level decoding scheme is considered. Simulation results show that, in the additive white Gaussian noise (AWGN) channels and the flash memory channels, as compared with the NMS algorithm, our algorithm significantly improves the decoding performance and the convergence speed. |
|---|---|
| AbstractList | For globally coupled low density parity check (GCLDPC) codes, the normalized Min-Sum (NMS) algorithm is a widely-used decoding algorithm but suffers from the degraded performance and the slow convergence speed. To address this issue, in this paper, by analyzing the relation between the bit error ratio (BER) and the degree of polarization of log-likelihood ratio (LLR) information, we propose an adaptive NMS decoding algorithm. In particular, the normalized factor is dynamically adjusted based on the average LLR information in the initial and the current iterations. Besides, the two-level decoding scheme is considered. Simulation results show that, in the additive white Gaussian noise (AWGN) channels and the flash memory channels, as compared with the NMS algorithm, our algorithm significantly improves the decoding performance and the convergence speed. |
| Author | Hu, Mengxin Fang, Yi Zhai, Xiongfei Han, Guojun Yu, Min Tao, Shunyou |
| Author_xml | – sequence: 1 givenname: Min surname: Yu fullname: Yu, Min email: 844535734@qq.com organization: Guangdong University of Technology,School of Information Engineering,Guangzhou,China,510006 – sequence: 2 givenname: Xiongfei surname: Zhai fullname: Zhai, Xiongfei email: zhaixiongfei@gdut.edu.cn organization: Guangdong University of Technology,School of Information Engineering,Guangzhou,China,510006 – sequence: 3 givenname: Mengxin surname: Hu fullname: Hu, Mengxin email: 850916216@qq.com organization: Guangdong University of Technology,School of Information Engineering,Guangzhou,China,510006 – sequence: 4 givenname: Shunyou surname: Tao fullname: Tao, Shunyou email: 201977654@qq.com organization: Guangdong University of Technology,School of Information Engineering,Guangzhou,China,510006 – sequence: 5 givenname: Yi surname: Fang fullname: Fang, Yi email: fangyi@gdut.edu.cn organization: Guangdong University of Technology,School of Information Engineering,Guangzhou,China,510006 – sequence: 6 givenname: Guojun surname: Han fullname: Han, Guojun email: gjhan@gdut.edu.cn organization: Guangdong University of Technology,School of Information Engineering,Guangzhou,China,510006 |
| BookMark | eNo1j99KwzAcRiPohc69gWBeoDN_mia5LJl1g1YFdz_S5pct0DYjrcJ8egfqd3PgXBz47tD1GEdA6JGSFaVEP22NMYUQTK8YYeLiaK6ZZldoqaVWnFORXyZvUVM6e5rDF-DXmAbbh29wuAlj9vE54DV00YXxgMv-EFOYjwOuYsL1-t1gEx1MOIy46u10xA0MMZ3v0Y23_QTLPy7QrnremU1Wv71sTVlnQfM5o1wKxSkBxQVzilAvoGit150ERynrrGu195Zr6S3zssht67jyqmMkt1rzBXr4zQYA2J9SGGw67_9P8h-oWkt3 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCC65529.2025.11149292 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331544447 |
| EndPage | 6 |
| ExternalDocumentID | 11149292 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-13758310e8352d801f5e6baf9c7ed112cadb9ffa397fa2f764abd38f8c204a993 |
| IEDL.DBID | RIE |
| IngestDate | Wed Sep 17 06:32:22 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-13758310e8352d801f5e6baf9c7ed112cadb9ffa397fa2f764abd38f8c204a993 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_11149292 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Aug.-10 |
| PublicationDateYYYYMMDD | 2025-08-10 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-Aug.-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | 2025 IEEE/CIC International Conference on Communications in China (ICCC) |
| PublicationTitleAbbrev | ICCC |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.91775 |
| Snippet | For globally coupled low density parity check (GCLDPC) codes, the normalized Min-Sum (NMS) algorithm is a widely-used decoding algorithm but suffers from the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | adaptive normalized factor AWGN channels Convergence Decoding Flash memories GC-LDPC codes Heuristic algorithms Iterative decoding NMS algorithm Simulation two-level decoding |
| Title | Adaptive Normalized Min-Sum Decoding Algorithm For LDPC Codes in Flash Memory |
| URI | https://ieeexplore.ieee.org/document/11149292 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aPHhSsaJWJQev249sdrM5lq2LQlsK9tBbycfELrS7pR-C_non21bx4MFbCIHAW5L3JjtvhpBHnSDtOKkDkQAGKIbrQCWSBw6McNqpMHZVEde-GA6TyUSO9mb1ygsDAFXyGTT9sPqXb0uz9U9lLTyXHOkcb9xjIeKdWWufs9Vpy9ZLmqZxFDHvP2FR87D6V9-Uijays39ueE7qPwY8OvqmlgtyBMUlGXStWvrbiQ690Jznn2DpIC-C1-2C9jCM9Gtpd_5WYsA_W9CsXNF-b5TStLSwpnlBM5TKMzrwybUfdTLOnsbpc7DvhhDkMvQt41HZoxYDL5ks8oqLINbKSSPAomgyymrpEFwpnGJOxFxpGyYuMazNFaqQK1IrygKuCZUMGLcdi7EU44Z1NDeIWhTaduKEMu6G1D0U0-Wu3sX0gMLtH_MNcuoBD6pCsXektllt4Z6cmPdNvl49VF_pCzfglGg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB2kCrpSseLbWbhNm04mj1mW1NBiEgp20V2Zpw20SelD0K_3TtoqLly4G4aBgRNmzrmTe-5F6ElEQDuGCSeMNAQokgqHR4w6RsvQCMO9wNRFXNMwz6PxmA13ZvXaC6O1rpPPdMsO63_5qpIb-1TWhnNJgc7hxj30KSXu1q61y9rquKw9iOM48H1iHSjEb-3X_-qcUhNHcvrPLc9Q88eCh4ff5HKODnR5gbKu4gt7P-HcSs1Z8akVzorSed3McQ8CSbsWd2dvFYT80zlOqiVOe8MYx5XSK1yUOAGxPMWZTa_9aKJR8jyK-86uH4JTMM82jQdtD2pMW9GkgFmMrwPBDZOhViCbJFeCGYCXhYYTEwaUC-VFJpLEpRx0yCVqlFWprxBmRBOqOgqiKUIl6QgqATXfU25kQi7NNWpaKCaLbcWLyR6Fmz_mH9Fxf5Slk3SQv9yiEwu-U5eNvUON9XKj79GRfF8Xq-VD_cW-ACI2l68 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE%2FCIC+International+Conference+on+Communications+in+China+%28ICCC%29&rft.atitle=Adaptive+Normalized+Min-Sum+Decoding+Algorithm+For+LDPC+Codes+in+Flash+Memory&rft.au=Yu%2C+Min&rft.au=Zhai%2C+Xiongfei&rft.au=Hu%2C+Mengxin&rft.au=Tao%2C+Shunyou&rft.date=2025-08-10&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICCC65529.2025.11149292&rft.externalDocID=11149292 |