Enhanced and Automatic Defect Detection in Thermography using Stacked Denoising Autoencoder
Active infrared thermography (AIRT) with frequency-modulated stimuli has emerged as a feasible and cost-effective non-destructive testing method for checking a variety of materials, with improved fault identification and depth resolution. However, assessing this non-stationary thermal response while...
Uloženo v:
| Vydáno v: | 2024 5th IEEE Global Conference for Advancement in Technology (GCAT) s. 1 - 8 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
04.10.2024
|
| Témata: | |
| ISBN: | 9798350376661 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Active infrared thermography (AIRT) with frequency-modulated stimuli has emerged as a feasible and cost-effective non-destructive testing method for checking a variety of materials, with improved fault identification and depth resolution. However, assessing this non-stationary thermal response while reducing noise and inhomogeneous backgrounds is difficult in FMT. Conventional thermographic data analysis techniques use signal or image processing methods and supervised learning models, which are known for linear representation or feature extraction of thermographic data. This paper describes a stacked denoising autoencoder (SDAE) in frequency modulated thermography (FMT) that extracts non-linear information from temporal thermal profiles to improve flaw detection in a steel structure. The SDAE trains on temporal thermal profiles in order to generate denoised profiles at the other end. Furthermore, the latent space in the middle of the SDAE decreases dimensionality while highlighting flaws. Finally, the latent space of SDAE and local outlier factor (LOF) were coupled to form SDAE-LOF, which provided automatic fault detection in unsupervised learning passion. Experimentation results on a mild steel structure show an improvement in defect signature by reducing noise in temporal thermal profiles, and the proposed SDAE-LOF achieved an AUC of 0.81 in automatic defect detection. |
|---|---|
| AbstractList | Active infrared thermography (AIRT) with frequency-modulated stimuli has emerged as a feasible and cost-effective non-destructive testing method for checking a variety of materials, with improved fault identification and depth resolution. However, assessing this non-stationary thermal response while reducing noise and inhomogeneous backgrounds is difficult in FMT. Conventional thermographic data analysis techniques use signal or image processing methods and supervised learning models, which are known for linear representation or feature extraction of thermographic data. This paper describes a stacked denoising autoencoder (SDAE) in frequency modulated thermography (FMT) that extracts non-linear information from temporal thermal profiles to improve flaw detection in a steel structure. The SDAE trains on temporal thermal profiles in order to generate denoised profiles at the other end. Furthermore, the latent space in the middle of the SDAE decreases dimensionality while highlighting flaws. Finally, the latent space of SDAE and local outlier factor (LOF) were coupled to form SDAE-LOF, which provided automatic fault detection in unsupervised learning passion. Experimentation results on a mild steel structure show an improvement in defect signature by reducing noise in temporal thermal profiles, and the proposed SDAE-LOF achieved an AUC of 0.81 in automatic defect detection. |
| Author | Ghali, V. S. Lakshmi, A. Vijaya Wang, Fei Vesala, G. T. Yerneni, Naga Prasanthi |
| Author_xml | – sequence: 1 givenname: G. T. surname: Vesala fullname: Vesala, G. T. email: gopitilak7@gmail.com organization: Malla Reddy University,School of Engineering,Department of Computer Science Engineering,Hyderabad,India – sequence: 2 givenname: V. S. surname: Ghali fullname: Ghali, V. S. email: gvs0raos@gmail.com organization: Koneru Lakshmaiah Education Foundation,Department of Electronics and Communication Engineering,Vijayawada,India – sequence: 3 givenname: A. Vijaya surname: Lakshmi fullname: Lakshmi, A. Vijaya email: vijayaavl6@gmail.com organization: Amrita Sai Institute of Science and Technology,Department of Electronics and Communication Engineering,Paritala,India – sequence: 4 givenname: Fei surname: Wang fullname: Wang, Fei email: wangfeipublic@hit.edu.cn organization: Harbin Institute of Technology,School of Mechatronics Engineering,Harbin,China – sequence: 5 givenname: Naga Prasanthi surname: Yerneni fullname: Yerneni, Naga Prasanthi email: Prasanthiiric157@gmail.com organization: Koneru Lakshmaiah Education Foundation,Department of Electronics and Communication Engineering,Vijayawada,India |
| BookMark | eNpVkMFOwzAQRI2AA5T-ARL-gRR77TrxMUpLQarEgdw4VK6zbiyIXaXuoX-PoXDg9DSz2lnN3pKrEAMS8sDZjHOmH1dN3SrQADNgIGfZAskYvyBTXepKzJkolarml_-04jfkfRl6Eyx21ISO1scUB5O8pQt0aFNGyvAxUB9o2-M4xN1o9v2JHg8-7OhbMvYjLy8wRP_jfEdgsLHD8Y5cO_N5wOkvJ6R9WrbNc7F-Xb009brwWqSCMwVOcuVkiaWTdstcl49zw4SFUjKhZaWrKk-MslpzsJCbiC1wbaBEJibk_hzrEXGzH_1gxtPm7wXiC7b_U_M |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/GCAT62922.2024.10924001 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350376685 |
| EndPage | 8 |
| ExternalDocumentID | 10924001 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i93t-1062f416f47e7f4cb0fdefe1a03c27403948988f4ca6c9912c26853b219a27e03 |
| IEDL.DBID | RIE |
| ISBN | 9798350376661 |
| IngestDate | Wed Apr 02 05:44:35 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i93t-1062f416f47e7f4cb0fdefe1a03c27403948988f4ca6c9912c26853b219a27e03 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_10924001 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Oct.-4 |
| PublicationDateYYYYMMDD | 2024-10-04 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-Oct.-4 day: 04 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 5th IEEE Global Conference for Advancement in Technology (GCAT) |
| PublicationTitleAbbrev | GCAT |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8847486 |
| Snippet | Active infrared thermography (AIRT) with frequency-modulated stimuli has emerged as a feasible and cost-effective non-destructive testing method for checking a... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Autoencoder Autoencoders Defect detection Feature extraction Frequency modulated thermography Frequency modulation Infrared imaging Latent space Local outlier factor Noise reduction Stacked denoising autoencoder Steel Thermal analysis Thermal noise Vectors |
| Title | Enhanced and Automatic Defect Detection in Thermography using Stacked Denoising Autoencoder |
| URI | https://ieeexplore.ieee.org/document/10924001 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYkBCAkQR3_LAmuI6rh2PVWlhQFWHClViqBz7AhlwUEj4_ZxNCmJgYIrlOHF0zvnO9nt3hFxbFxKF6CHqtxSJsC5PslS4ZDQ0UtiRNSbudzw-qPk8W630oiOrRy4MAETwGQxCMZ7lu8q2YasMNVwHyCMudraVkhuy1p5WGv0IhqqCxqbDcGHTm7vJeCm55oFvxcVg8_SvPCrRjMz2__kBB6T_Q8iji29Tc0i2wB-Rp6l_ief31HhHx21TxfCr9BYCRAMvTYRZeVp6in9D_dpFp6YB6_5M0c1EDXbYzldlrAmvCHEtHdR9spxNl5P7pMuVkJQ6bXAylbxA36oQClQhbM4Kh50NDUstrjtZqkWmswzvGGnRJeSWSzTUOc5Xhitg6THp-crDCaEO-KgoVJZDCB6IGmqlS2UBPBfMWcFOST8IZv32FQ1jvZHJ2R_152Q3iD8C4MQF6TV1C5dkx3405Xt9FcfwE3TjnD0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yBQVBxYnf5uC1M0vTtDmOOZ04xw5FBh5Gmg_twVRq59_vS-wUDx48taTpB0lf3kvy-_0eQpdK-0Qhog_2zVnElC6iLGY6SvqSM5UoKcN6x-MknU6z-VzMWrJ64MIYYwL4zPT8adjL15Va-qUysHDhIY8w2VlPGKNkRdfaFqmASIKAsYC7aVFcUPnqdjjIORXUM64o663u_5VJJTiSm51_fsIu6v5Q8vDs29nsoTXj9tHTyL2EHXwsncaDZVMFAVZ8bTxIAw5NAFo5XDoM_0P92upTY492f8YQaIINa6jnqjKU-Ed4ZUtt6i7Kb0b5cBy12RKiUsQNDKecWoiuLEtNapkqiNXwsr4ksYKZJ4kFy0SWwRXJFQSFVFEOrrqAEUvS1JD4AHVc5cwhwtrQxNo0K4yXDwQbVVzH3BpaMKIVI0eo6xtm8falh7FYtcnxH-UXaHOcP0wWk7vp_Qna8l0R4HDsFHWaemnO0Ib6aMr3-jz05yfGa5-E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+5th+IEEE+Global+Conference+for+Advancement+in+Technology+%28GCAT%29&rft.atitle=Enhanced+and+Automatic+Defect+Detection+in+Thermography+using+Stacked+Denoising+Autoencoder&rft.au=Vesala%2C+G.+T.&rft.au=Ghali%2C+V.+S.&rft.au=Lakshmi%2C+A.+Vijaya&rft.au=Wang%2C+Fei&rft.date=2024-10-04&rft.pub=IEEE&rft.isbn=9798350376661&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FGCAT62922.2024.10924001&rft.externalDocID=10924001 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350376661/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350376661/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350376661/sc.gif&client=summon&freeimage=true |

