Enhanced and Automatic Defect Detection in Thermography using Stacked Denoising Autoencoder

Active infrared thermography (AIRT) with frequency-modulated stimuli has emerged as a feasible and cost-effective non-destructive testing method for checking a variety of materials, with improved fault identification and depth resolution. However, assessing this non-stationary thermal response while...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 5th IEEE Global Conference for Advancement in Technology (GCAT) S. 1 - 8
Hauptverfasser: Vesala, G. T., Ghali, V. S., Lakshmi, A. Vijaya, Wang, Fei, Yerneni, Naga Prasanthi
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 04.10.2024
Schlagworte:
ISBN:9798350376661
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Active infrared thermography (AIRT) with frequency-modulated stimuli has emerged as a feasible and cost-effective non-destructive testing method for checking a variety of materials, with improved fault identification and depth resolution. However, assessing this non-stationary thermal response while reducing noise and inhomogeneous backgrounds is difficult in FMT. Conventional thermographic data analysis techniques use signal or image processing methods and supervised learning models, which are known for linear representation or feature extraction of thermographic data. This paper describes a stacked denoising autoencoder (SDAE) in frequency modulated thermography (FMT) that extracts non-linear information from temporal thermal profiles to improve flaw detection in a steel structure. The SDAE trains on temporal thermal profiles in order to generate denoised profiles at the other end. Furthermore, the latent space in the middle of the SDAE decreases dimensionality while highlighting flaws. Finally, the latent space of SDAE and local outlier factor (LOF) were coupled to form SDAE-LOF, which provided automatic fault detection in unsupervised learning passion. Experimentation results on a mild steel structure show an improvement in defect signature by reducing noise in temporal thermal profiles, and the proposed SDAE-LOF achieved an AUC of 0.81 in automatic defect detection.
AbstractList Active infrared thermography (AIRT) with frequency-modulated stimuli has emerged as a feasible and cost-effective non-destructive testing method for checking a variety of materials, with improved fault identification and depth resolution. However, assessing this non-stationary thermal response while reducing noise and inhomogeneous backgrounds is difficult in FMT. Conventional thermographic data analysis techniques use signal or image processing methods and supervised learning models, which are known for linear representation or feature extraction of thermographic data. This paper describes a stacked denoising autoencoder (SDAE) in frequency modulated thermography (FMT) that extracts non-linear information from temporal thermal profiles to improve flaw detection in a steel structure. The SDAE trains on temporal thermal profiles in order to generate denoised profiles at the other end. Furthermore, the latent space in the middle of the SDAE decreases dimensionality while highlighting flaws. Finally, the latent space of SDAE and local outlier factor (LOF) were coupled to form SDAE-LOF, which provided automatic fault detection in unsupervised learning passion. Experimentation results on a mild steel structure show an improvement in defect signature by reducing noise in temporal thermal profiles, and the proposed SDAE-LOF achieved an AUC of 0.81 in automatic defect detection.
Author Ghali, V. S.
Lakshmi, A. Vijaya
Wang, Fei
Vesala, G. T.
Yerneni, Naga Prasanthi
Author_xml – sequence: 1
  givenname: G. T.
  surname: Vesala
  fullname: Vesala, G. T.
  email: gopitilak7@gmail.com
  organization: Malla Reddy University,School of Engineering,Department of Computer Science Engineering,Hyderabad,India
– sequence: 2
  givenname: V. S.
  surname: Ghali
  fullname: Ghali, V. S.
  email: gvs0raos@gmail.com
  organization: Koneru Lakshmaiah Education Foundation,Department of Electronics and Communication Engineering,Vijayawada,India
– sequence: 3
  givenname: A. Vijaya
  surname: Lakshmi
  fullname: Lakshmi, A. Vijaya
  email: vijayaavl6@gmail.com
  organization: Amrita Sai Institute of Science and Technology,Department of Electronics and Communication Engineering,Paritala,India
– sequence: 4
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  email: wangfeipublic@hit.edu.cn
  organization: Harbin Institute of Technology,School of Mechatronics Engineering,Harbin,China
– sequence: 5
  givenname: Naga Prasanthi
  surname: Yerneni
  fullname: Yerneni, Naga Prasanthi
  email: Prasanthiiric157@gmail.com
  organization: Koneru Lakshmaiah Education Foundation,Department of Electronics and Communication Engineering,Vijayawada,India
BookMark eNpVkMFOwzAQRI2AA5T-ARL-gRR77TrxMUpLQarEgdw4VK6zbiyIXaXuoX-PoXDg9DSz2lnN3pKrEAMS8sDZjHOmH1dN3SrQADNgIGfZAskYvyBTXepKzJkolarml_-04jfkfRl6Eyx21ISO1scUB5O8pQt0aFNGyvAxUB9o2-M4xN1o9v2JHg8-7OhbMvYjLy8wRP_jfEdgsLHD8Y5cO_N5wOkvJ6R9WrbNc7F-Xb009brwWqSCMwVOcuVkiaWTdstcl49zw4SFUjKhZaWrKk-MslpzsJCbiC1wbaBEJibk_hzrEXGzH_1gxtPm7wXiC7b_U_M
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GCAT62922.2024.10924001
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350376685
EndPage 8
ExternalDocumentID 10924001
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-1062f416f47e7f4cb0fdefe1a03c27403948988f4ca6c9912c26853b219a27e03
IEDL.DBID RIE
ISBN 9798350376661
IngestDate Wed Apr 02 05:44:35 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-1062f416f47e7f4cb0fdefe1a03c27403948988f4ca6c9912c26853b219a27e03
PageCount 8
ParticipantIDs ieee_primary_10924001
PublicationCentury 2000
PublicationDate 2024-Oct.-4
PublicationDateYYYYMMDD 2024-10-04
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2024 5th IEEE Global Conference for Advancement in Technology (GCAT)
PublicationTitleAbbrev GCAT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8847486
Snippet Active infrared thermography (AIRT) with frequency-modulated stimuli has emerged as a feasible and cost-effective non-destructive testing method for checking a...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Autoencoder
Autoencoders
Defect detection
Feature extraction
Frequency modulated thermography
Frequency modulation
Infrared imaging
Latent space
Local outlier factor
Noise reduction
Stacked denoising autoencoder
Steel
Thermal analysis
Thermal noise
Vectors
Title Enhanced and Automatic Defect Detection in Thermography using Stacked Denoising Autoencoder
URI https://ieeexplore.ieee.org/document/10924001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYkBCAkQRb3lgTUlt186NVaEwoKpDh0oMVfyCDDgopPx-ziYFMTAwJXKchy4533fxd58JuWbM62HpIRsazzJhjMxAK51JsFFvTOVaJ8n8RzWbFcslzLti9VQL45xL5DM3iLtpLt_WZh1_laGHQ6Q8YrKzrZTcFGvtgQLEETm6CgabjsOFXW_uJ-OFZMBivRUTg83Zv9ZRSWFkuv_PBzgg_Z-CPDr_DjWHZMuFI_J0F17S_D0tg6XjdVsn-VV66yJFAzdtolkFWgWKX0Pz2qlT08h1f6YIM9GDLfYLdZVa4iWirqV1TZ8spneLyUPWrZWQVcBbHEwl84itvFBOeWF07i3ebFjm3GDemXMQBRQFHimlQUjIDJMYqDWOVyVTLufHpBfq4E4ILUZCldyNMJXSAoTSiDk8WI1AkQsuRqekHw2zevtSw1htbHL2R_s52Y3mTwQ4cUF6bbN2l2THfLTVe3OV3uEn-EuboQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQQQIJCRBFfOOBNcV1nDgeq9JSRKk6ZKjEUMVfkAEHhZTfz9mkIAYGpkSOE0d2zvcufveM0DWlVvYLK6K-sjRiSqWRkFxGqdBeb4wTKYNk_pTPZtliIeZtsnrIhTHGBPKZ6fnTsJavK7Xyv8rAwoWnPEKws5kwRsk6XWtXcAFIgoCxgLtpWVxQ-eZuOMhTKqjPuKKst77_104qwZGM9_75Cvuo-5OSh-ffzuYAbRh3iJ5G7iWs4OPCaTxYNVUQYMW3xpM04NAEopXDpcPwPdSvrT419mz3ZwxAE2xYQz1XlaHEP8IrW2pTd1E-HuXDSdTulhCVIm5gOk2pBXRlGTfcMiWJ1dBYvyCxgsiTxIJlIsvgSpEqAIVU0RRctYQZq6DckPgIdVzlzDHCWcJ4EZsEginJBOMSUIcVWgJUjFnMkhPU9R2zfPvSw1iu--T0j_IrtD3JH6fL6f3s4Qzt-KEIdDh2jjpNvTIXaEt9NOV7fRnG8xNDZp7o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+5th+IEEE+Global+Conference+for+Advancement+in+Technology+%28GCAT%29&rft.atitle=Enhanced+and+Automatic+Defect+Detection+in+Thermography+using+Stacked+Denoising+Autoencoder&rft.au=Vesala%2C+G.+T.&rft.au=Ghali%2C+V.+S.&rft.au=Lakshmi%2C+A.+Vijaya&rft.au=Wang%2C+Fei&rft.date=2024-10-04&rft.pub=IEEE&rft.isbn=9798350376661&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FGCAT62922.2024.10924001&rft.externalDocID=10924001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350376661/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350376661/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9798350376661/sc.gif&client=summon&freeimage=true