On Linear Convergence of PI Consensus Algorithm under the Restricted Secant Inequality
This paper considers solving distributed optimization problems in peer-to-peer multi-agent networks. The network is synchronous and connected. By using the proportional-integral (PI) control strategy, various algorithms with fixed stepsize have been developed. Two notable among them are the PI algor...
Gespeichert in:
| Veröffentlicht in: | 2024 Tenth Indian Control Conference (ICC) S. 415 - 420 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
09.12.2024
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper considers solving distributed optimization problems in peer-to-peer multi-agent networks. The network is synchronous and connected. By using the proportional-integral (PI) control strategy, various algorithms with fixed stepsize have been developed. Two notable among them are the PI algorithm and the PI consensus algorithm. Although the PI algorithm has provable linear or exponential convergence without the standard requirement of (strong) convexity, a similar guarantee for the PI consensus algorithm is unavailable. In this paper, using Lyapunov theory, we guarantee exponential convergence of the PI consensus algorithm for global cost functions that satisfy the restricted secant inequality, with rate-matching discretization, without requiring convexity. To accelerate the PI consensus algorithm, we incorporate local pre-conditioning in the form of constant positive definite matrices and numerically validate its efficiency compared to the prominent distributed convex optimization algorithms. Unlike classical pre-conditioning, where only the gradients are multiplied by a pre-conditioner, the proposed pre-conditioning modifies both the gradients and the consensus terms, thereby controlling the effect of the communication graph on the algorithm. |
|---|---|
| AbstractList | This paper considers solving distributed optimization problems in peer-to-peer multi-agent networks. The network is synchronous and connected. By using the proportional-integral (PI) control strategy, various algorithms with fixed stepsize have been developed. Two notable among them are the PI algorithm and the PI consensus algorithm. Although the PI algorithm has provable linear or exponential convergence without the standard requirement of (strong) convexity, a similar guarantee for the PI consensus algorithm is unavailable. In this paper, using Lyapunov theory, we guarantee exponential convergence of the PI consensus algorithm for global cost functions that satisfy the restricted secant inequality, with rate-matching discretization, without requiring convexity. To accelerate the PI consensus algorithm, we incorporate local pre-conditioning in the form of constant positive definite matrices and numerically validate its efficiency compared to the prominent distributed convex optimization algorithms. Unlike classical pre-conditioning, where only the gradients are multiplied by a pre-conditioner, the proposed pre-conditioning modifies both the gradients and the consensus terms, thereby controlling the effect of the communication graph on the algorithm. |
| Author | Chakrabarti, Kushal Baranwal, Mayank |
| Author_xml | – sequence: 1 givenname: Kushal surname: Chakrabarti fullname: Chakrabarti, Kushal email: chakrabarti.k@tcs.com organization: Tata Consultancy Services Research,Division of Data & Decision Sciences,Mumbai,India,400607 – sequence: 2 givenname: Mayank surname: Baranwal fullname: Baranwal, Mayank email: baranwal.mayank@tcs.com organization: Tata Consultancy Services Research,Division of Data & Decision Sciences,Mumbai,India,400607 |
| BookMark | eNo1j8tKw0AYRkfQhda-gci8QOpM5r4swUsgUNHitszlTzuQTnQyEfr2Kurqg7M4nO8KnacxAUK3lKwoJeaubRrJlWCrmtR8RYnWTAlyhpZGGc0YFVTVtL5Eb5uEu5jAZtyM6RPyHpIHPPb4uf0hE6RpnvB62I85lsMRzylAxuUA-AWmkqMvEPAreJsKbhN8zHaI5XSNLno7TLD82wXaPtxvm6eq2zy2zbqroqGlAm7Jd08wJEjrmVeip04bbaUm3FsrHWVS1Vy4oB0N0kkblOTEBU-MFoQt0M2vNgLA7j3Ho82n3f9b9gUmuE9A |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICC64753.2024.10883750 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331517212 |
| EndPage | 420 |
| ExternalDocumentID | 10883750 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i91t-e4a0979d90d6ac3c75f1b898a6804caa6b1367245bd8b1d6b6ad7640bdc098503 |
| IEDL.DBID | RIE |
| IngestDate | Wed Feb 26 09:42:56 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i91t-e4a0979d90d6ac3c75f1b898a6804caa6b1367245bd8b1d6b6ad7640bdc098503 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10883750 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Dec.-9 |
| PublicationDateYYYYMMDD | 2024-12-09 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec.-9 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 Tenth Indian Control Conference (ICC) |
| PublicationTitleAbbrev | ICC |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8918692 |
| Snippet | This paper considers solving distributed optimization problems in peer-to-peer multi-agent networks. The network is synchronous and connected. By using the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 415 |
| SubjectTerms | Accelerated aging Agents-based systems Consensus algorithm Convergence Convex functions Cost function Distributed optimization algorithms Linear matrix inequalities Logistic regression Lyapunov methods Peer-to-peer computing |
| Title | On Linear Convergence of PI Consensus Algorithm under the Restricted Secant Inequality |
| URI | https://ieeexplore.ieee.org/document/10883750 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPHhSseKbHLxuzW7TPI6yWCxIXbSU3koes1rQXelD8N87ybaKBw_ekhAIzGQy8yXzZQi5UiK16AdNgoC2l3CtIDGsdNi1IJXLjI-5OeN7ORyqyUQXa7J65MIAQEw-g05oxrd8X7tVuCpDC1eIpwJC35ZSNGStNes3Zfp6kOeCY_iNqC_jnc3kX2VTotfo7_1zvX3S_uHf0eLbsxyQLagOyfihoogccWfSPKSKR9Yk0LqkxSCMLELRigW9eX2uEfC_vNFAD5tTDPDoI4TqHA6DS_oEQZZ0UEFDp_xsk1H_dpTfJeuqCMlMp8sEuGFaaq-ZF8Z1neyVqVVaGaEYd8YIGz5hy3jPemVTL6wwXgrOrHcM1cG6R6RV1RUcEyqUAK6cQbvs4nlZal06VClgyFTaTKYnpB1kMn1v_r2YbsRx-sf4GdkNko_JHvqctJbzFVyQHfexnC3ml1FbXzh4l9c |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5SBT2pWPFtDl63ZrfZbHKUxdJirUVL6a3kMasF3ZU-BP-9k7RVPHjwloRAYCaTmS-ZL0PIlRSxQT-oIwS0acSVhEizwmLXQCZtol3IzRl2s15PjkaqvyKrBy4MAITkM2j4ZnjLd5Vd-KsytHCJeMoj9M2U84Qt6Vor3m_M1HUnzwXHABxxX8Ib6-m_CqcEv9Ha_eeKe6T-w8Cj_W_fsk82oDwgw4eSInbEvUlznyweeJNAq4L2O35k5stWzOjN63OFkP_ljXqC2JRiiEcfwdfnsBhe0ifw0qSdEpaEys86GbRuB3k7WtVFiCYqnkfANVOZcoo5oW3TZmkRG6mkFpJxq7Uw_hu2hKfGSRM7YYR2meDMOMtQIax5SGplVcIRoUIK4NJqtMwmnpiFUoVFpQIGTYVJsviY1L1Mxu_Lny_Ga3Gc_DF-Sbbbg_vuuNvp3Z2SHa-FkPqhzkhtPl3AOdmyH_PJbHoRNPcFTVybHg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+Tenth+Indian+Control+Conference+%28ICC%29&rft.atitle=On+Linear+Convergence+of+PI+Consensus+Algorithm+under+the+Restricted+Secant+Inequality&rft.au=Chakrabarti%2C+Kushal&rft.au=Baranwal%2C+Mayank&rft.date=2024-12-09&rft.pub=IEEE&rft.spage=415&rft.epage=420&rft_id=info:doi/10.1109%2FICC64753.2024.10883750&rft.externalDocID=10883750 |