Enhanced Human Segmentation from 2D LiDAR Data Using DBSCAN Clustering
This study presents a comprehensive approach to segmenting human objects in point cloud data generated by 2D LiDAR sensors within indoor environments, where challenges such as shape variability, noise, and the presence of non-human objects complicate the process. The proposed method leverages the DB...
Gespeichert in:
| Veröffentlicht in: | 2024 International Conference on Electrical and Information Technology (IEIT) S. 33 - 37 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
12.09.2024
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This study presents a comprehensive approach to segmenting human objects in point cloud data generated by 2D LiDAR sensors within indoor environments, where challenges such as shape variability, noise, and the presence of non-human objects complicate the process. The proposed method leverages the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm, which is well-suited for clustering data points based on density without requiring a predefined number of clusters. The experimental results identified three distinct clusters: Cluster 0 exhibited a regular spread of data points, Cluster 1 featured concentrated mean_x and mean_y values, and Cluster 2 displayed a higher mean_y with a larger standard deviation, reflecting a more dispersed cluster. The DBSCAN algorithm demonstrated its effectiveness with a silhouette score of 0.700 and a Davies-Bouldin index of 0.439, outperforming traditional methods like k-means in terms of clustering accuracy. Human objects were accurately identified, with objects 1 and 3 correctly clustered, while object 2, although a round chair, was grouped with human objects due to feature similarity. These findings underscore the method's potential for improving indoor environment monitoring and autonomous navigation systems, where precise segmentation of human objects is crucial |
|---|---|
| AbstractList | This study presents a comprehensive approach to segmenting human objects in point cloud data generated by 2D LiDAR sensors within indoor environments, where challenges such as shape variability, noise, and the presence of non-human objects complicate the process. The proposed method leverages the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm, which is well-suited for clustering data points based on density without requiring a predefined number of clusters. The experimental results identified three distinct clusters: Cluster 0 exhibited a regular spread of data points, Cluster 1 featured concentrated mean_x and mean_y values, and Cluster 2 displayed a higher mean_y with a larger standard deviation, reflecting a more dispersed cluster. The DBSCAN algorithm demonstrated its effectiveness with a silhouette score of 0.700 and a Davies-Bouldin index of 0.439, outperforming traditional methods like k-means in terms of clustering accuracy. Human objects were accurately identified, with objects 1 and 3 correctly clustered, while object 2, although a round chair, was grouped with human objects due to feature similarity. These findings underscore the method's potential for improving indoor environment monitoring and autonomous navigation systems, where precise segmentation of human objects is crucial |
| Author | Riansyah, Moch. Iskandar Fikri, Muhammad Ainul Rahmanti, Farah Zakiyah |
| Author_xml | – sequence: 1 givenname: Muhammad Ainul surname: Fikri fullname: Fikri, Muhammad Ainul email: ainulfikri@student.telkomuniversity.ac.id organization: Department of Information Technology School of Computing Telkom University,Surabaya,Indonesia – sequence: 2 givenname: Moch. Iskandar surname: Riansyah fullname: Riansyah, Moch. Iskandar email: riansyah@telkomuniversity.ac.id organization: Departement of Elecetrical Enginering School of Electrical Engineering Telkom University & Institut Teknologi Sepuluh Nopember,Surabaya,Indonesia – sequence: 3 givenname: Farah Zakiyah surname: Rahmanti fullname: Rahmanti, Farah Zakiyah email: farahzakiyah@telkomuniversity.ac.id organization: Department of Information Technology School of Computing Telkom University & Institut Teknologi Sepuluh Nopember,Surabaya,Indonesia |
| BookMark | eNo1j8FOhDAURWuiCx3nD0zsD4B9bSntEoFxSIgmDq4nj-ljJBmKAWbh3zuJurrJWZyce8euwxiIsUcQMYBwT1VZNUYrDbEUUscgUqNEqq7Y2qXOKgUJGGvtLduU4RPDgTzfngcMfEfHgcKCSz8G3k3jwGXB677I3nmBC_KPuQ9HXjzv8uyV56fzvNB0IffspsPTTOu_XbFmUzb5NqrfXqo8q6PewRIRyENiURJiSwheo1KYuBRFS8JbDbaTxvvWkVXSC9PSJdbYVnfOph68WrGHX21PRPuvqR9w-t7_v1M_IVFItg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IEIT64341.2024.10763073 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331516888 |
| EndPage | 37 |
| ExternalDocumentID | 10763073 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i91t-e12c58a2eaabea1d4a33a597a0be0d8418f26ddb9e832d06be79868b4f987d1d3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jan 15 06:20:24 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i91t-e12c58a2eaabea1d4a33a597a0be0d8418f26ddb9e832d06be79868b4f987d1d3 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_10763073 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Sept.-12 |
| PublicationDateYYYYMMDD | 2024-09-12 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sept.-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 International Conference on Electrical and Information Technology (IEIT) |
| PublicationTitleAbbrev | IEIT |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.897913 |
| Snippet | This study presents a comprehensive approach to segmenting human objects in point cloud data generated by 2D LiDAR sensors within indoor environments, where... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 33 |
| SubjectTerms | 2D LiDAR Accuracy Clustering algorithms DBSCAN Dynamics Heuristic algorithms Indoor environment Laser radar Noise Object recognition Point Cloud Data Segmentation Shape |
| Title | Enhanced Human Segmentation from 2D LiDAR Data Using DBSCAN Clustering |
| URI | https://ieeexplore.ieee.org/document/10763073 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2EePCkRozf6cFrsS1ltz0iC5HEECIcuJFpO6skuhhc_P12y6Lx4MFbM2nSdNrJ60znzRBy6zkkEBwL5nKtmJJOMONyz1JABG6sDaLYbCIdj_V8biY1WT1yYRAxJp9huxrGv3y_cpsqVBYsPFhDuJMN0kjTZEvWqnO2BDd3o8FoFgBWVW6fVO3d7F99UyJsDA__ueARaf0Q8OjkG1qOyR4WJ2Q4KF7ifz2NkXc6xee3mjlU0IomQmVGH5dZ74lmUAKN2QA0u5_2e2Paf91UJRGCpEVmw8Gs_8DqNghsaUTJUEjX1SARwCIIr6DTgeAGALfIvVZC5zLx3hoMxul5YjE1OtFW5UanXvjOKWkWqwLPCPVO5l3npQ2vDGUFmuDvJTbgEXhufK7PSavSweJ9W-hisdv-xR_yS3JQaZrFjgpXpFmuN3hN9t1nufxY38Tj-QKb3ZIL |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UTfSkRoxve_BabEvZbY_IQiDihsgeuJE-ZpVEF4OLv99uAY0HD96aSZOm006-znS-GYRuHdWR9o4FsbkURHDLiLK5I7EG0FQZ40Wh2UScpnIyUaM1WT1wYQAgJJ9BoxqGv3w3t8sqVOYt3FuDv5PbaKclBKcrutY6a4tRdTfoDjIPsaJy_LhobOb_6pwSgKN38M8lD1H9h4KHR9_gcoS2oDhGvW7xEn7scYi94zE8v625QwWuiCKYJ3g4S9pPONGlxiEfACf34047xZ3XZVUUwUvqKOt1s06frBshkJliJQHGbUtqDlob0MwJ3Wxq7whoaoA6KZjMeeScUeDN09HIQKxkJI3IlYwdc80TVCvmBZwi7CzPW9Zx498ZwjBQ3uOLjEck7ahyuTxD9UoH0_dVqYvpZvvnf8hv0F4_exxOh4P04QLtV1onob_CJaqViyVcoV37Wc4-FtfhqL4AZzqVUg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Electrical+and+Information+Technology+%28IEIT%29&rft.atitle=Enhanced+Human+Segmentation+from+2D+LiDAR+Data+Using+DBSCAN+Clustering&rft.au=Fikri%2C+Muhammad+Ainul&rft.au=Riansyah%2C+Moch.+Iskandar&rft.au=Rahmanti%2C+Farah+Zakiyah&rft.date=2024-09-12&rft.pub=IEEE&rft.spage=33&rft.epage=37&rft_id=info:doi/10.1109%2FIEIT64341.2024.10763073&rft.externalDocID=10763073 |