Enhanced Human Segmentation from 2D LiDAR Data Using DBSCAN Clustering

This study presents a comprehensive approach to segmenting human objects in point cloud data generated by 2D LiDAR sensors within indoor environments, where challenges such as shape variability, noise, and the presence of non-human objects complicate the process. The proposed method leverages the DB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 International Conference on Electrical and Information Technology (IEIT) S. 33 - 37
Hauptverfasser: Fikri, Muhammad Ainul, Riansyah, Moch. Iskandar, Rahmanti, Farah Zakiyah
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 12.09.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This study presents a comprehensive approach to segmenting human objects in point cloud data generated by 2D LiDAR sensors within indoor environments, where challenges such as shape variability, noise, and the presence of non-human objects complicate the process. The proposed method leverages the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm, which is well-suited for clustering data points based on density without requiring a predefined number of clusters. The experimental results identified three distinct clusters: Cluster 0 exhibited a regular spread of data points, Cluster 1 featured concentrated mean_x and mean_y values, and Cluster 2 displayed a higher mean_y with a larger standard deviation, reflecting a more dispersed cluster. The DBSCAN algorithm demonstrated its effectiveness with a silhouette score of 0.700 and a Davies-Bouldin index of 0.439, outperforming traditional methods like k-means in terms of clustering accuracy. Human objects were accurately identified, with objects 1 and 3 correctly clustered, while object 2, although a round chair, was grouped with human objects due to feature similarity. These findings underscore the method's potential for improving indoor environment monitoring and autonomous navigation systems, where precise segmentation of human objects is crucial
AbstractList This study presents a comprehensive approach to segmenting human objects in point cloud data generated by 2D LiDAR sensors within indoor environments, where challenges such as shape variability, noise, and the presence of non-human objects complicate the process. The proposed method leverages the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm, which is well-suited for clustering data points based on density without requiring a predefined number of clusters. The experimental results identified three distinct clusters: Cluster 0 exhibited a regular spread of data points, Cluster 1 featured concentrated mean_x and mean_y values, and Cluster 2 displayed a higher mean_y with a larger standard deviation, reflecting a more dispersed cluster. The DBSCAN algorithm demonstrated its effectiveness with a silhouette score of 0.700 and a Davies-Bouldin index of 0.439, outperforming traditional methods like k-means in terms of clustering accuracy. Human objects were accurately identified, with objects 1 and 3 correctly clustered, while object 2, although a round chair, was grouped with human objects due to feature similarity. These findings underscore the method's potential for improving indoor environment monitoring and autonomous navigation systems, where precise segmentation of human objects is crucial
Author Riansyah, Moch. Iskandar
Fikri, Muhammad Ainul
Rahmanti, Farah Zakiyah
Author_xml – sequence: 1
  givenname: Muhammad Ainul
  surname: Fikri
  fullname: Fikri, Muhammad Ainul
  email: ainulfikri@student.telkomuniversity.ac.id
  organization: Department of Information Technology School of Computing Telkom University,Surabaya,Indonesia
– sequence: 2
  givenname: Moch. Iskandar
  surname: Riansyah
  fullname: Riansyah, Moch. Iskandar
  email: riansyah@telkomuniversity.ac.id
  organization: Departement of Elecetrical Enginering School of Electrical Engineering Telkom University & Institut Teknologi Sepuluh Nopember,Surabaya,Indonesia
– sequence: 3
  givenname: Farah Zakiyah
  surname: Rahmanti
  fullname: Rahmanti, Farah Zakiyah
  email: farahzakiyah@telkomuniversity.ac.id
  organization: Department of Information Technology School of Computing Telkom University & Institut Teknologi Sepuluh Nopember,Surabaya,Indonesia
BookMark eNo1j8FOhDAURWuiCx3nD0zsD4B9bSntEoFxSIgmDq4nj-ljJBmKAWbh3zuJurrJWZyce8euwxiIsUcQMYBwT1VZNUYrDbEUUscgUqNEqq7Y2qXOKgUJGGvtLduU4RPDgTzfngcMfEfHgcKCSz8G3k3jwGXB677I3nmBC_KPuQ9HXjzv8uyV56fzvNB0IffspsPTTOu_XbFmUzb5NqrfXqo8q6PewRIRyENiURJiSwheo1KYuBRFS8JbDbaTxvvWkVXSC9PSJdbYVnfOph68WrGHX21PRPuvqR9w-t7_v1M_IVFItg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IEIT64341.2024.10763073
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331516888
EndPage 37
ExternalDocumentID 10763073
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-e12c58a2eaabea1d4a33a597a0be0d8418f26ddb9e832d06be79868b4f987d1d3
IEDL.DBID RIE
IngestDate Wed Jan 15 06:20:24 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-e12c58a2eaabea1d4a33a597a0be0d8418f26ddb9e832d06be79868b4f987d1d3
PageCount 5
ParticipantIDs ieee_primary_10763073
PublicationCentury 2000
PublicationDate 2024-Sept.-12
PublicationDateYYYYMMDD 2024-09-12
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-12
  day: 12
PublicationDecade 2020
PublicationTitle 2024 International Conference on Electrical and Information Technology (IEIT)
PublicationTitleAbbrev IEIT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.897913
Snippet This study presents a comprehensive approach to segmenting human objects in point cloud data generated by 2D LiDAR sensors within indoor environments, where...
SourceID ieee
SourceType Publisher
StartPage 33
SubjectTerms 2D LiDAR
Accuracy
Clustering algorithms
DBSCAN
Dynamics
Heuristic algorithms
Indoor environment
Laser radar
Noise
Object recognition
Point Cloud Data
Segmentation
Shape
Title Enhanced Human Segmentation from 2D LiDAR Data Using DBSCAN Clustering
URI https://ieeexplore.ieee.org/document/10763073
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2EePCkRozf6cFrsS1ltz0iC5HEECIcuJFpO6skuhhc_P12y6Lx4MFbM2nSdNrJ60znzRBy6zkkEBwL5nKtmJJOMONyz1JABG6sDaLYbCIdj_V8biY1WT1yYRAxJp9huxrGv3y_cpsqVBYsPFhDuJMN0kjTZEvWqnO2BDd3o8FoFgBWVW6fVO3d7F99UyJsDA__ueARaf0Q8OjkG1qOyR4WJ2Q4KF7ifz2NkXc6xee3mjlU0IomQmVGH5dZ74lmUAKN2QA0u5_2e2Paf91UJRGCpEVmw8Gs_8DqNghsaUTJUEjX1SARwCIIr6DTgeAGALfIvVZC5zLx3hoMxul5YjE1OtFW5UanXvjOKWkWqwLPCPVO5l3npQ2vDGUFmuDvJTbgEXhufK7PSavSweJ9W-hisdv-xR_yS3JQaZrFjgpXpFmuN3hN9t1nufxY38Tj-QKb3ZIL
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4UTfSkRoxve_BabEvZbY_IQiDihsgeuJE-ZpVEF4OLv99uAY0HD96aSZOm006-znS-GYRuHdWR9o4FsbkURHDLiLK5I7EG0FQZ40Wh2UScpnIyUaM1WT1wYQAgJJ9BoxqGv3w3t8sqVOYt3FuDv5PbaKclBKcrutY6a4tRdTfoDjIPsaJy_LhobOb_6pwSgKN38M8lD1H9h4KHR9_gcoS2oDhGvW7xEn7scYi94zE8v625QwWuiCKYJ3g4S9pPONGlxiEfACf34047xZ3XZVUUwUvqKOt1s06frBshkJliJQHGbUtqDlob0MwJ3Wxq7whoaoA6KZjMeeScUeDN09HIQKxkJI3IlYwdc80TVCvmBZwi7CzPW9Zx498ZwjBQ3uOLjEck7ahyuTxD9UoH0_dVqYvpZvvnf8hv0F4_exxOh4P04QLtV1onob_CJaqViyVcoV37Wc4-FtfhqL4AZzqVUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Electrical+and+Information+Technology+%28IEIT%29&rft.atitle=Enhanced+Human+Segmentation+from+2D+LiDAR+Data+Using+DBSCAN+Clustering&rft.au=Fikri%2C+Muhammad+Ainul&rft.au=Riansyah%2C+Moch.+Iskandar&rft.au=Rahmanti%2C+Farah+Zakiyah&rft.date=2024-09-12&rft.pub=IEEE&rft.spage=33&rft.epage=37&rft_id=info:doi/10.1109%2FIEIT64341.2024.10763073&rft.externalDocID=10763073