Consensus + Innovations Approach for Online Distributed Multi-Area Inertia Estimation
The reduction of overall system inertia in modern power systems due to the increasing deployment of distributed energy resources is generally recognized as a major issue for system stability. Consequently, real-time monitoring of system inertia is critical to ensure a reliable and cost-effective sys...
Gespeichert in:
| Veröffentlicht in: | 2024 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE) S. 1 - 6 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
14.10.2024
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The reduction of overall system inertia in modern power systems due to the increasing deployment of distributed energy resources is generally recognized as a major issue for system stability. Consequently, real-time monitoring of system inertia is critical to ensure a reliable and cost-effective system operation. Large-scale power systems are typically managed by multiple transmission system operators, making it difficult to have a central entity with access to global measurement data, which is usually required for estimating the overall system inertia. We address this problem by proposing a fully distributed inertia estimation algorithm with rigorous analytical convergence guarantees. This method requires only peer-to-peer sharing of local parameter estimates between neighboring control areas, eliminating the need for a centralized collection of real-time measurements. We robustify the algorithm in the presence of typical power system disturbances and demonstrate its performance in simulations based on the well-known New England IEEE 39-bus system. |
|---|---|
| DOI: | 10.1109/ISGTEUROPE62998.2024.10863379 |