Two-layer Optimal Scheduling Method for Shared Energy Storage and Integrated Energy Microgrid Systems Based on Adaptive Mutation Particle Swarm Optimization Algorithm
In the context of increasing renewable energy installations, developing energy storage technologies is a necessary measure to address demand matching issues and reduce the impact of uncertainty in wind and solar power generation on the grid. This paper introduces shared energy storage into integrate...
Uloženo v:
| Vydáno v: | 2024 4th International Conference on Energy, Power and Electrical Engineering (EPEE) s. 1189 - 1197 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
20.09.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the context of increasing renewable energy installations, developing energy storage technologies is a necessary measure to address demand matching issues and reduce the impact of uncertainty in wind and solar power generation on the grid. This paper introduces shared energy storage into integrated energy microgrid systems and describes the system operation framework. Operational models are established for the microgrid operator, the shared energy storage service provider, and the user aggregator. To take into account the interests of all parties involved, a two-layer optimization scheduling strategy for the integrated energy microsystem considering shared energy storage under a leader-follower game strategy is proposed. The upper-layer pricing model of the microgrid operator is solved using an adaptive mutation particle swarm optimization algorithm, updating the electricity and heat selling prices of the upper-level leader. The lower-level problem is solved using the CPLEX solver, optimizing equipment output, demand response, and electricity purchase and sale plans. The combined method of the solver and the particle swarm optimization algorithm optimizes the operational strategies of shared energy storage and the microgrid alliance, and the effectiveness of the proposed model is demonstrated through simulation examples. |
|---|---|
| AbstractList | In the context of increasing renewable energy installations, developing energy storage technologies is a necessary measure to address demand matching issues and reduce the impact of uncertainty in wind and solar power generation on the grid. This paper introduces shared energy storage into integrated energy microgrid systems and describes the system operation framework. Operational models are established for the microgrid operator, the shared energy storage service provider, and the user aggregator. To take into account the interests of all parties involved, a two-layer optimization scheduling strategy for the integrated energy microsystem considering shared energy storage under a leader-follower game strategy is proposed. The upper-layer pricing model of the microgrid operator is solved using an adaptive mutation particle swarm optimization algorithm, updating the electricity and heat selling prices of the upper-level leader. The lower-level problem is solved using the CPLEX solver, optimizing equipment output, demand response, and electricity purchase and sale plans. The combined method of the solver and the particle swarm optimization algorithm optimizes the operational strategies of shared energy storage and the microgrid alliance, and the effectiveness of the proposed model is demonstrated through simulation examples. |
| Author | Zou, Chao Liu, Wei Zhang, Yunjie |
| Author_xml | – sequence: 1 givenname: Chao surname: Zou fullname: Zou, Chao email: willbaker@163.com organization: Kunming Engineering Corporation Limited,Kunming,China – sequence: 2 givenname: Yunjie surname: Zhang fullname: Zhang, Yunjie email: zhangyunjie_kmy@powerchina.cn organization: Kunming Engineering Corporation Limited,Kunming,China – sequence: 3 givenname: Wei surname: Liu fullname: Liu, Wei email: xnyxliuwei_kmy@powerchina.cn organization: Kunming Engineering Corporation Limited,Kunming,China |
| BookMark | eNpFkN9KwzAYxSPohc69gWBeoDNJ_-ZyjqqDjQ26-_E1-doG2makmaM-kM9pYYpXB84PzjmcB3Lb2x4JeeZswTmTL_k-z5MwDflCMBEtOMvSmGXihsxlKrMw5DHPWJLck-_DxQYtjOjo7uRNBy0tVIP63Jq-plv0jdW0so4WDTjUNO_R1SMtvHVQI4Ve03XvsXbg_-nWKGdrZzQtxsFjN9BXGCZse7rUMNV8It2ePXgzOXtw3qgWaXEB111XmK8rW7a1dcY33SO5q6AdcP6rM3J4yw-rj2Cze1-vlpvASO4DxbJMZSmIUiDyiEkJSaQRRanKiscsFTGLVJImOhaykkqXSgHTVRUJqBjycEaerrEGEY8nN_3hxuPfe-EPxepujg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/EPEE63731.2024.10875082 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798331518066 |
| EndPage | 1197 |
| ExternalDocumentID | 10875082 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i91t-c088c87a2b2ee14099a64dee2bcbf15072504c676d529f9cdbcca0dff42af0e13 |
| IEDL.DBID | RIE |
| IngestDate | Wed Feb 26 09:43:36 EST 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i91t-c088c87a2b2ee14099a64dee2bcbf15072504c676d529f9cdbcca0dff42af0e13 |
| PageCount | 9 |
| ParticipantIDs | ieee_primary_10875082 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Sept.-20 |
| PublicationDateYYYYMMDD | 2024-09-20 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sept.-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 4th International Conference on Energy, Power and Electrical Engineering (EPEE) |
| PublicationTitleAbbrev | EPEE |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8833926 |
| Snippet | In the context of increasing renewable energy installations, developing energy storage technologies is a necessary measure to address demand matching issues... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1189 |
| SubjectTerms | Adaptation models component Electricity Energy storage Lead acid batteries Microgrid system Microgrids Micromechanical devices Optimal scheduling Particle swarm optimization Particle Swarm Optimization Algorithm Pricing Resistance heating Shared energy storage stackelberg game |
| Title | Two-layer Optimal Scheduling Method for Shared Energy Storage and Integrated Energy Microgrid Systems Based on Adaptive Mutation Particle Swarm Optimization Algorithm |
| URI | https://ieeexplore.ieee.org/document/10875082 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFG508eBJjTP-zjt4ZUJhlB6nYdHETZItZreltI-5ZIMFmfuP_DttC5vx4METBEgg79H3o_2-r4TcBZIavFrkqBQjJ0AqHY6hdCLFvUjojCesmM7bCxsOo8mEJw1Z3XJhENGCz7BjTu1avirk2kyV6RGuq2uds_bJPmNhTdZqMFuey-_jJI5Dn_mm7aNBZ_v0r31TbNroH_3zhcek_UPAg2SXWk7IHuan5Gu8KZyF0DUyvOqBvhQLGGmTK4Mln8HAbgUNugYFI8KMCmJL64OR7qp10ACRK3jeikPs7g4MIG9WzhU02uXwoPOagiKHnhIrEwxhsK7X6yFp_jMYbUS5rL-i4XFCbzErynn1vmyTcT8ePz45zTYLzpx7lSN1nJEREzSliEb-ioswUIg0lWlmykUjciZDFqou5RmXKtVOd1WWBVRkLnr-GWnlRY7nBFiAXcUkk77kActYJDPdr2RcH0PTCV2QtrHxdFULaUy35r384_oVOTSeNPAM6l6TVlWu8YYcyM9q_lHeWvd_AxH-tv8 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTfSkRoy_fQevw1HKuh7RjEhkuARiuJGufUMS2MgE-Y_8O23HwHjw4GnLtmTLa_t-rN_3PULumaIWr-Y7OkbfYUiVI9BTjq9F3Zcm4slCTOety3s9fzgUUUlWL7gwiFiAz7BmT4u9fJ2ppf1VZla4ya5NzNole03GqLuma5WorborHoIoCLwGb9jCj7La5vlfnVOKwNE--ucrj0n1h4IH0Ta4nJAdTE_J12CVOVNpsmR4NUt9JqfQN0bXFk0-hrBoBg0mCwUrw4wagoLYB31TVxu3ATLV0NnIQ2zvhhaSN84nGkr1cng0kU1DlkJLy7l1hxAu1zv2EJUzDformc_WX1EyOaE1HWf5ZPE-q5JBOxg8PTtlowVnIuoLRxlPo3wuaUwRrQCWkB7TiDRWcWITRitzpjzu6SYViVA6NsPu6iRhVCYu1htnpJJmKZ4T4AybmiuuGkownnBfJaZiSYQ5erYWuiBVa-PRfC2lMdqY9_KP63fk4HkQdkfdTu_lihzaUbVgDepek8oiX-IN2Vefi8lHfltMhW-6PLpG |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+4th+International+Conference+on+Energy%2C+Power+and+Electrical+Engineering+%28EPEE%29&rft.atitle=Two-layer+Optimal+Scheduling+Method+for+Shared+Energy+Storage+and+Integrated+Energy+Microgrid+Systems+Based+on+Adaptive+Mutation+Particle+Swarm+Optimization+Algorithm&rft.au=Zou%2C+Chao&rft.au=Zhang%2C+Yunjie&rft.au=Liu%2C+Wei&rft.date=2024-09-20&rft.pub=IEEE&rft.spage=1189&rft.epage=1197&rft_id=info:doi/10.1109%2FEPEE63731.2024.10875082&rft.externalDocID=10875082 |