Two-layer Optimal Scheduling Method for Shared Energy Storage and Integrated Energy Microgrid Systems Based on Adaptive Mutation Particle Swarm Optimization Algorithm

In the context of increasing renewable energy installations, developing energy storage technologies is a necessary measure to address demand matching issues and reduce the impact of uncertainty in wind and solar power generation on the grid. This paper introduces shared energy storage into integrate...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 4th International Conference on Energy, Power and Electrical Engineering (EPEE) s. 1189 - 1197
Hlavní autoři: Zou, Chao, Zhang, Yunjie, Liu, Wei
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 20.09.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the context of increasing renewable energy installations, developing energy storage technologies is a necessary measure to address demand matching issues and reduce the impact of uncertainty in wind and solar power generation on the grid. This paper introduces shared energy storage into integrated energy microgrid systems and describes the system operation framework. Operational models are established for the microgrid operator, the shared energy storage service provider, and the user aggregator. To take into account the interests of all parties involved, a two-layer optimization scheduling strategy for the integrated energy microsystem considering shared energy storage under a leader-follower game strategy is proposed. The upper-layer pricing model of the microgrid operator is solved using an adaptive mutation particle swarm optimization algorithm, updating the electricity and heat selling prices of the upper-level leader. The lower-level problem is solved using the CPLEX solver, optimizing equipment output, demand response, and electricity purchase and sale plans. The combined method of the solver and the particle swarm optimization algorithm optimizes the operational strategies of shared energy storage and the microgrid alliance, and the effectiveness of the proposed model is demonstrated through simulation examples.
AbstractList In the context of increasing renewable energy installations, developing energy storage technologies is a necessary measure to address demand matching issues and reduce the impact of uncertainty in wind and solar power generation on the grid. This paper introduces shared energy storage into integrated energy microgrid systems and describes the system operation framework. Operational models are established for the microgrid operator, the shared energy storage service provider, and the user aggregator. To take into account the interests of all parties involved, a two-layer optimization scheduling strategy for the integrated energy microsystem considering shared energy storage under a leader-follower game strategy is proposed. The upper-layer pricing model of the microgrid operator is solved using an adaptive mutation particle swarm optimization algorithm, updating the electricity and heat selling prices of the upper-level leader. The lower-level problem is solved using the CPLEX solver, optimizing equipment output, demand response, and electricity purchase and sale plans. The combined method of the solver and the particle swarm optimization algorithm optimizes the operational strategies of shared energy storage and the microgrid alliance, and the effectiveness of the proposed model is demonstrated through simulation examples.
Author Zou, Chao
Liu, Wei
Zhang, Yunjie
Author_xml – sequence: 1
  givenname: Chao
  surname: Zou
  fullname: Zou, Chao
  email: willbaker@163.com
  organization: Kunming Engineering Corporation Limited,Kunming,China
– sequence: 2
  givenname: Yunjie
  surname: Zhang
  fullname: Zhang, Yunjie
  email: zhangyunjie_kmy@powerchina.cn
  organization: Kunming Engineering Corporation Limited,Kunming,China
– sequence: 3
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  email: xnyxliuwei_kmy@powerchina.cn
  organization: Kunming Engineering Corporation Limited,Kunming,China
BookMark eNpFkN9KwzAYxSPohc69gWBeoDNJ_-ZyjqqDjQ26-_E1-doG2makmaM-kM9pYYpXB84PzjmcB3Lb2x4JeeZswTmTL_k-z5MwDflCMBEtOMvSmGXihsxlKrMw5DHPWJLck-_DxQYtjOjo7uRNBy0tVIP63Jq-plv0jdW0so4WDTjUNO_R1SMtvHVQI4Ve03XvsXbg_-nWKGdrZzQtxsFjN9BXGCZse7rUMNV8It2ePXgzOXtw3qgWaXEB111XmK8rW7a1dcY33SO5q6AdcP6rM3J4yw-rj2Cze1-vlpvASO4DxbJMZSmIUiDyiEkJSaQRRanKiscsFTGLVJImOhaykkqXSgHTVRUJqBjycEaerrEGEY8nN_3hxuPfe-EPxepujg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/EPEE63731.2024.10875082
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331518066
EndPage 1197
ExternalDocumentID 10875082
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-c088c87a2b2ee14099a64dee2bcbf15072504c676d529f9cdbcca0dff42af0e13
IEDL.DBID RIE
IngestDate Wed Feb 26 09:43:36 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-c088c87a2b2ee14099a64dee2bcbf15072504c676d529f9cdbcca0dff42af0e13
PageCount 9
ParticipantIDs ieee_primary_10875082
PublicationCentury 2000
PublicationDate 2024-Sept.-20
PublicationDateYYYYMMDD 2024-09-20
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-20
  day: 20
PublicationDecade 2020
PublicationTitle 2024 4th International Conference on Energy, Power and Electrical Engineering (EPEE)
PublicationTitleAbbrev EPEE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8833926
Snippet In the context of increasing renewable energy installations, developing energy storage technologies is a necessary measure to address demand matching issues...
SourceID ieee
SourceType Publisher
StartPage 1189
SubjectTerms Adaptation models
component
Electricity
Energy storage
Lead acid batteries
Microgrid system
Microgrids
Micromechanical devices
Optimal scheduling
Particle swarm optimization
Particle Swarm Optimization Algorithm
Pricing
Resistance heating
Shared energy storage
stackelberg game
Title Two-layer Optimal Scheduling Method for Shared Energy Storage and Integrated Energy Microgrid Systems Based on Adaptive Mutation Particle Swarm Optimization Algorithm
URI https://ieeexplore.ieee.org/document/10875082
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFG508eBJjTP-zjt4ZUJhlB6nYdHETZItZreltI-5ZIMFmfuP_DttC5vx4METBEgg79H3o_2-r4TcBZIavFrkqBQjJ0AqHY6hdCLFvUjojCesmM7bCxsOo8mEJw1Z3XJhENGCz7BjTu1avirk2kyV6RGuq2uds_bJPmNhTdZqMFuey-_jJI5Dn_mm7aNBZ_v0r31TbNroH_3zhcek_UPAg2SXWk7IHuan5Gu8KZyF0DUyvOqBvhQLGGmTK4Mln8HAbgUNugYFI8KMCmJL64OR7qp10ACRK3jeikPs7g4MIG9WzhU02uXwoPOagiKHnhIrEwxhsK7X6yFp_jMYbUS5rL-i4XFCbzErynn1vmyTcT8ePz45zTYLzpx7lSN1nJEREzSliEb-ioswUIg0lWlmykUjciZDFqou5RmXKtVOd1WWBVRkLnr-GWnlRY7nBFiAXcUkk77kActYJDPdr2RcH0PTCV2QtrHxdFULaUy35r384_oVOTSeNPAM6l6TVlWu8YYcyM9q_lHeWvd_AxH-tv8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTfSkRoy_fQevw1HKuh7RjEhkuARiuJGufUMS2MgE-Y_8O23HwHjw4GnLtmTLa_t-rN_3PULumaIWr-Y7OkbfYUiVI9BTjq9F3Zcm4slCTOety3s9fzgUUUlWL7gwiFiAz7BmT4u9fJ2ppf1VZla4ya5NzNole03GqLuma5WorborHoIoCLwGb9jCj7La5vlfnVOKwNE--ucrj0n1h4IH0Ta4nJAdTE_J12CVOVNpsmR4NUt9JqfQN0bXFk0-hrBoBg0mCwUrw4wagoLYB31TVxu3ATLV0NnIQ2zvhhaSN84nGkr1cng0kU1DlkJLy7l1hxAu1zv2EJUzDformc_WX1EyOaE1HWf5ZPE-q5JBOxg8PTtlowVnIuoLRxlPo3wuaUwRrQCWkB7TiDRWcWITRitzpjzu6SYViVA6NsPu6iRhVCYu1htnpJJmKZ4T4AybmiuuGkownnBfJaZiSYQ5erYWuiBVa-PRfC2lMdqY9_KP63fk4HkQdkfdTu_lihzaUbVgDepek8oiX-IN2Vefi8lHfltMhW-6PLpG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+4th+International+Conference+on+Energy%2C+Power+and+Electrical+Engineering+%28EPEE%29&rft.atitle=Two-layer+Optimal+Scheduling+Method+for+Shared+Energy+Storage+and+Integrated+Energy+Microgrid+Systems+Based+on+Adaptive+Mutation+Particle+Swarm+Optimization+Algorithm&rft.au=Zou%2C+Chao&rft.au=Zhang%2C+Yunjie&rft.au=Liu%2C+Wei&rft.date=2024-09-20&rft.pub=IEEE&rft.spage=1189&rft.epage=1197&rft_id=info:doi/10.1109%2FEPEE63731.2024.10875082&rft.externalDocID=10875082