Refining Coded Image in Human Vision Layer Using CNN-Based Post-Processing

Scalable image coding for both humans and machines is a technique that has gained a lot of attention recently. This technology enables the hierarchical decoding of images for human vision and image recognition models. It is a highly effective method when images need to serve both purposes. However,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Global Conference on Consumer Electronics s. 166 - 167
Hlavní autoři: Shindo, Takahiro, Tatsumi, Yui, Watanabe, Taiju, Watanabe, Hiroshi
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.10.2024
Témata:
ISSN:2693-0854
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Scalable image coding for both humans and machines is a technique that has gained a lot of attention recently. This technology enables the hierarchical decoding of images for human vision and image recognition models. It is a highly effective method when images need to serve both purposes. However, no research has yet incorporated the post-processing commonly used in popular image compression schemes into scalable image coding method for humans and machines. In this paper, we propose a method to enhance the quality of decoded images for humans by integrating post-processing into scalable coding scheme. Experimental results show that the post-processing improves compression performance. Furthermore, the effectiveness of the proposed method is validated through comparisons with traditional methods.
ISSN:2693-0854
DOI:10.1109/GCCE62371.2024.10760327